
Efficient globally optimal segmentation of cells in fluorescence
microscopy images using level sets and convex energy functionals

Tania Aguirre
ENS-Paris Saclay
Saclay, France

tania.aguirre_lordoguin@ens-paris-saclay.fr

Laura Fuentes
Université Paris Saclay

Saclay, France
laura.fuentes-vicente@universite-paris-saclay.fr

1 INTRODUCTION (L)
Image segmentation is the process of partitioning an image into
multiple regions [1]. In the article, the authors address this tech-
nique for the purpose of cell nuclei segmentation in fluorescence
microscopy images. Several approaches have been introduced over
the years, and difficulties have arisen in parallel. One of the main
approaches is called thresholding. This technique assumes that seg-
ments in the image have similar intensity and creates a binary mask
based on a threshold intensity value. Nevertheless, its performance
tends to be affected by the shading of intensity inhomogeneities.
These problems arise from technical limitations or artifacts intro-
duced by the imaged object.

Deformable models are based on parametric or implicit models,
allowing the incorporation of a priori knowledge and adopting a
broader range of shapes. Parametric models rely on explicit rep-
resentations of objects, such as active contour models and region-
based energy functionals, but are dependent on parameters and
susceptible to difficulties associated with topological changes. Im-
plicit models could offer an alternative solution as they address the
issue of topological changes.

This method employs level set functions coupled with gradient-
based energy functions and defines active contour gradient and
region-based terms. The objective is to minimize the energy func-
tion; however, the main challenge lies in non-convex optimization
problems leading to local minima and issues related to initialization.

A summary of the challenges in segmentation includes intensity
inhomogeneities, topological changes, parameter initialization, and
non-convex minimization problems.

The paper introduces an implicit method utilizing level set func-
tions and active contour energy functionals, leading to convex
optimization problems. Two distinct methods are proposed for seg-
menting clustered cell nuclei. The first method involves a 3-step
implementation based on a convex reformulation of the equations
found in [3] and [10]. The second technique adopts a 2-step ap-
proach based on the equation from [9] and [10]. The authors employ
the Split Bregman algorithm paired with Gauss-Seidel to iteratively
solve the optimization problem.

2 METHODS (L)
The implementation of the algorithm for any of the three energy
functions necessitates the initialization of a level set function. Level
set functions are utilized to define a contour along the border, be-
ing positively (respectively, negatively) defined in the foreground
(respectively, background) and associated with zero values on the
object boundary. Energy functions guide the evolution of the level
set function over steps and consist of two terms: a data fidelity term
that gauges the performance of the level set function in aligning

with the image, and a regularization term that promotes smooth-
ness. The level set function is iteratively updated by minimizing
the energy function:

𝑚𝑖𝑛
0≤𝜙𝑛≤1

𝐸𝑐𝑗 (Θ, 𝜙𝑛) = 𝜆 < 𝜙𝑛, 𝑟 𝑗 > +|∇𝜙𝑛 |1 (1)

where 𝑟 𝑗 refers to the the energy force related to 𝐸𝑐
𝑗
(Θ, 𝜕Ω).

The article addresses cell nuclei segmentation by reiterating the
problem described in (1) with various energy forces 𝑟 𝑗 at different
iteration levels. [Figures 1, 2] depict two diagrams illustrating the
two proposed modes in the article. The first approach resolves the
convex problem described in (1) three times, whereas the second
approach solves it twice, both with different energy functions at
each step.

Figure 1: 3-step algorithm

Figure 2: 2-step algorithm

2.1 The Split Bregman Method Applied to
Globally Convex Segmentation (T)

The algorithm strongly relies on optimizing the problem described
in (1), which formulates a globally convex segmentation problem
(GSC). To address the non-convexity issue observed in previous
studies and achieve easily manageable solutions, the authors em-
ploy two strategies. First, they utilize derivative versions of the

1

Medical Image Analysis, November 2023, MVA et al.

energy functions, and secondly, they omit the Heaviside function
as solutions in gradient descent remain identical. To ensure a well-
defined global minimal solution, the level set function needs to be
confined to the interval [0, 1][5].

The problem is equivalent to introducing an auxiliary variable ®𝑑
by enforcing the constraint ®𝑑 = ∇𝜙𝑛 and transforming the problem
into an unconstrained form:

argmin
0≤𝜙𝑛≤1, ®𝑑

(
𝜆 < 𝜙𝑛, 𝑟 𝑗 > +| ®𝑑 |1 +

𝜈

2 | |
®𝑑 − ∇𝜙𝑛 | |22

)
(2)

where we introduce a quadratic penalty function on ®𝑑 . The optimal
solution can be found by initially minimizing with respect to 𝜙𝑛 ,
solving the differentiable optimization problem. Subsequently, the
final solution is determined by minimizing the auxiliary variable ®𝑑 .
Once the optimization problem is resolved, the segmented region
is obtained by thresholding the level set function:

Ω = {𝑥 : 𝜙𝑛 (𝑥) > 𝛼} (3)

for some 𝛼 ∈ (0, 1)
The article employs the Split Bregman algorithm iteratively to

solve the problem due to its efficiency in L1-regularized problems
and its ability to reach global maxima. This method involves vari-
able splitting and Bregman iteration using a fixed 𝜆, with a new
auxiliary vector ®𝑏 incorporated in the penalty term. The problem is
reformulated as follows: (𝜙𝑘+1𝑛 , ®𝑑𝑘)

= argmin
0≤𝜙𝑘

𝑛≤1, ®𝑑𝑘

(
𝜆 < 𝜙𝑘𝑛 , 𝑟 𝑗 > +| ®𝑑𝑘−1 |1 +

𝜈

2 | |
®𝑑𝑘−1 − ∇𝜙𝑘𝑛 − ®𝑏𝑘−1 | |22

)
(4)

®𝑏𝑘 = ®𝑏𝑘−1 + ∇𝜙𝑘𝑛 − ®𝑑𝑘 (5)

where 𝜈
2 | |𝑑 − ∇𝜙𝑛 − 𝑏𝑘−2 | |22 refers to the constraint.

As mentioned previously, each step of the iteration involves two
alternating minimizations. Initially, we minimize with respect to 𝜙𝑛
with ®𝑏 and ®𝑑 fixed. The minimizer is characterized as the solution
of the following differential equation:

Δ𝜙𝑛 (𝑥) =
𝜆

𝜈
𝑟 𝑗 + ∇ · (®𝑑 − ®𝑏) (6)

The article suggests solving the differential equation using Gauss-
Seidel, which will be described at the end of this section.

Secondly, the shrink operator is employed for updating ®𝑑 :

®𝑑𝑘 =𝑚𝑎𝑥{| ®𝑏𝑘−1 + ∇𝜙𝑘𝑛 |2 − 𝜈, 0}
®𝑏𝑘−1 + ∇𝜙𝑘𝑛

| ®𝑏𝑘−1 + ∇𝜙𝑘𝑛 |2

and we finally update ®𝑏𝑘 = ®𝑏𝑘−1 + ∇𝜙𝑘𝑛 − ®𝑑𝑘 .
For our implementation, we particularly utilized the pseudo-

code presented in [5]. This paper suggests a discretization of the
level set function as well as ®𝑑𝑘 and ®𝑏𝑘 , enabling straightforward
computation of the iterative updates.

The next level set function is computed by iteratively solving the
differential equation described in (6) using the Gauss-Seidel method.
Considering the auxiliary vectors as ®𝑑 = (𝑑𝑥 , 𝑑𝑦) and ®𝑏 = (𝑏𝑥 , 𝑏𝑦),
the method calculates each component of the level set using the

Algorithm 1 Split Bregman for GCS

while | |𝜙𝑘 − 𝜙𝑘−1 | | > 𝜖 do
Define 𝑟𝑘−1 the energy function for the level set 𝜙𝑘−1𝑛

𝜙𝑘𝑛 = 𝐺𝑆𝐺𝑆𝐶 (𝑟𝑘−1, ®𝑑𝑘−1, ®𝑏𝑘−1)
®𝑑𝑘 = 𝑠ℎ𝑟𝑖𝑛𝑘 (∇𝜙𝑘𝑛 + ®𝑏𝑘−1, 𝜈)
®𝑏𝑘 = ®𝑏𝑘−1 + ∇𝜙𝑘𝑛 − ®𝑑𝑘
Find Ω𝑘 = {𝑥 : 𝜙𝑘𝑛 (𝑥) > 0}
Update 𝜇0 and 𝜇1
(and 𝜎0, 𝜎1 depending on the energy functional)

end while

following equations:

𝛼𝑖, 𝑗 = 𝑑
𝑥
𝑖−1, 𝑗 − 𝑑

𝑥
𝑖,𝑗 − 𝑏

𝑥
𝑖−1, 𝑗 + 𝑏

𝑥
𝑖,𝑗 + 𝑑

𝑦

𝑖,𝑗−1 − 𝑑
𝑦

𝑖,𝑗
− 𝑏𝑦

𝑖,𝑗−1 + 𝑏
𝑦

𝑖,𝑗
(7)

𝛽𝑖, 𝑗 =
1
4 (𝜙𝑖−1, 𝑗 + 𝜙𝑖+1, 𝑗 + 𝜙𝑖, 𝑗−1 + 𝜙𝑖, 𝑗+1 − 𝑟𝑖, 𝑗 + 𝛼𝑖, 𝑗) (8)

𝜙𝑖, 𝑗 =𝑚𝑎𝑥 (𝑚𝑖𝑛(𝛽𝑖, 𝑗 , 1), 0) (9)
In conclusion, the presented solution iteratively solves the con-

vex problem described in equation (1) for any energy force 𝑟 𝑗 . To
address the problem, it is essential to initially minimize the level set
function using the iterative Gauss-Seidel method. This is followed
by an update on the auxiliary vectors ®𝑑 and ®𝑏 until convergence is
achieved, resulting in the same level set function.

2.2 Energy functions (L)
The fundamental concept behind energy functions is to guide the
evolution of level set functions subject to certain constraints [3].
Edge detectors are linked to the gradient of the image, and the
minimization of the energy function involves positioning the level
set function at the maximum of the image’s gradient, emphasizing
smoothness in the process.

In the paper, three functionals are introduced to address the
segmentation problem:

𝑟1 = 𝜅1 (𝐼 (𝑥) − 𝜇1)2 − 𝜅0 (𝐼 (𝑥) − 𝜇0)2 (10)
The first functional 𝑟1 (10) corresponds to the energy functional
[Appendix A.2: 𝐸1 (Θ, 𝜕Ω)], introduced in [3]. This function seeks
to minimize the Mumford-Shah functional by identifying the opti-
mal approximation of the real image with smooth regularization.
It operates under the assumption that the image is a piecewise
constant function. However, this assumption does not account for
local intensity information, rendering it susceptible to intensity in-
homogeneities. For each region, the authors dynamically compute
𝜇𝑖 , minimizing the global fit energy corresponding to the average.

𝑟2 = 𝑙𝑜𝑔(𝑃 (𝐼 (𝑥) |Ω1) − 𝑙𝑜𝑔(𝑃 (𝐼 (𝑥) |Ω0)i (11)
Next, 𝑟2 (11) corresponds to a Bayesian functional [Appendix A.2:
𝐸2 (Θ, 𝜕Ω)], introduced in [10]. This functional relies on the con-
ditional probability that 𝐼 (𝑥) belongs to region Ω𝑖 (𝑃 (𝐼 (𝑥) |Ω𝑖)),
derived from the Gaussian density family function. By introduc-
ing the standard deviation term 𝜎 , emphasis is placed on local

iP(I(x)|Ω𝑖) = 1√
2𝜋𝜎2

𝑒

(𝐼 (𝑥)−𝜇𝑖)2

2𝜎2
𝑖

2

Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals Medical Image Analysis, November 2023,

areas. Consequently, our energy function provides a localized ap-
proximation of information, effectively addressing global intensity
inhomogeneities while enhancing the discrimination of regions. As
𝜙 evolves, the Gaussian parameters are updated iteratively.

𝑟3 = 𝜅1

∫
𝐾𝜎 (𝑦−𝑥) |𝐼 (𝑥)−𝑓1 (𝑦) |2𝑑𝑦−𝜅0

∫
𝐾𝜎 (𝑦−𝑥) |𝐼 (𝑥)−𝑓0 (𝑦) |2𝑑𝑦ii

(12)
Finally, 𝑟3 (12) corresponds to the region-scalable fitting energy

functional [Appendix A.2: 𝐸3 (Θ, 𝜕Ω)], proposed in [9]. This func-
tion is a part of the region-based active contour functions. Similar
to last implementation, this energy function incorporates a scaling
parameter, 𝜎 , to determine the size of the region. This parameter is
introduced in 𝑓𝑖 (𝑥), representing the approximation of the image
intensity centered at 𝑥 , as well as in a Gaussian kernel. The kernel
function utilizes the intensity information of the region controlled
by 𝜎 by reducing the contribution of points that move far away
from 𝑥 . The significance of this scaling parameter lies in its ability to
focus from small neighborhoods to the entire image, providing flex-
ibility to address both global and local intensity inhomogeneities
in the image.

2.3 Step by step implementations (L)
In the 3-step method, they employ a combination of 𝐸𝑐1 (Θ, 𝜕Ω) and
𝐸𝑐2 (Θ, 𝜕Ω).

2.3.1 3-step method.
As a first step, they apply 𝐸𝑐2 to the entire image for segmenting cell
nuclei. The scaling factor 𝜎𝑖 accommodates varying background
and foreground intensities, addressing intensity inhomogeneities.
In the second step, they minimize 𝐸𝑐1 on the previously segmented
regions from step 1, eliminating the need for a coupling term. This
step is aimed at separating cell nuclei that were falselymerged in the
initial segmentation (multiple merged cells segmented). However,
𝐸𝑐1 still considers homogeneity among regions, leaving intensity
inhomogeneities unresolved. The final step involves reapplying 𝐸𝑐2
over a dilated version of the segmented outputs from step 2. This
operation results in a more accurate and smoother boundary while
overcoming intensity inhomogeneities [Figure 1].

2.3.2 2-step method.

In the two step approach, they rather use a combination of
𝐸𝑐3 (Θ, 𝜕Ω) and 𝐸

𝑐
2 (Θ, 𝜕Ω).

In the first step, they apply 𝐸𝑐3 , which addresses both local and
global intensity inhomogeneities. This energy function incorpo-
rates the term 𝐾𝜎 that provides high sensitivity to local varying
mean intensities. This characteristic prevents the merging issues
encountered in the 3-step approach [Figure 1, Step 1] and handles
variations in background intensities. Similar to the 3-step method,
the final step involves implementing 𝐸𝑐2 over the dilated segmented
output to enhance boundary precision and smoothness.

After segmentation is completed, regions of interest are extracted
by thresholding on the level set function.

iiK𝜎 (𝑢) = 1√
2𝜋𝜎2

𝑒
− |𝑢 |2
2𝜎2

3 RESULTS (T)
The approach described above is applied to 2-D fluorescence mi-
croscopy images of cell nuclei from four different experiments. The
experiments compare different cell types.

The authors used four different sets, three of which have ground
truth available [4, 7], while for the last set they manually outline
the borders of the nuclei. A full description of the dataset can be
found in [Appendix: A.1].

The automatic evaluation is done using traditional region-based
measures, like the Dice coefficient, and contour-based measures,
such as the normalised sum of the distance and the Hausdorff
distance [Appendix: A.3]. The article also presents two detection
measures, such as the number of false positives (FP) and the number
of false negatives (FN).

The article makes a complete analysis of the method: presents
an evaluation of the state-of-the-art techniques of the moment,
describes a sensitivity analysis of the parameters, and evaluates the
time consumption between convex and non-convex approaches. In
addition, they manually relabelled 5 images from each dataset to
compare their results.

The choice of default parameters was based on a subset of the
dataset that gave better results. However, it is not mentioned how
this subset was selected or how many. The figures [Table 2, Table 1]
show the default parameters for the 3-step and 2-step approaches.
The parameter 𝑑 is associated to the erosion, but there is no clear
relation mentionned. For the convergence criteria of the Split Breg-
man algorithm, they evaluate whether the contour solution has
changed using the Euclidean distance between the currently com-
puted contour and the previous one.

3 - step approach
Step Energy 𝜅0 𝜅1 𝜈 𝜆 𝑑

1 𝐸2 - - 10 10000 -
2 𝐸1 1 1 10 1000 -
3 𝐸2 - - 10 1000 28iii

Table 1: Default parameters used for the 3 - step approach.

2 - step approach
Step Energy 𝜅0 𝜅1 𝜈 𝜆 𝜎 𝑑

1 𝐸2 - - 10 10000 16iv -
2 𝐸1 1 1 10 1000 28v

Table 2: Default parameters used for the 2 - step approach.

In light of the expanded analysis, our attentionwill be exclusively
directed towards the U20S dataset, given its larger image volume
and superior image quality.

The method is compared with other traditional algorithms such
as Otsu Thresholding, Watershed algorithm and Merging algorithm.
When considering the region and contour based metrics, the best
of these three is the Merging algorithm. Nevertheless, the 3-step
approach improves the results slightly, giving an improvement of
+0.02, +0.05 in Dice, NSD and equal results in Hausdorff. While the

3

Medical Image Analysis, November 2023, MVA et al.

2-step approach improves the Dice metric by +0.02, the NSD metric
by +0.06 and the Hausdorff metric by +0.5. Looking at the detection
analysis, it is not possible to extract any useful information.

This analysis is also compared using the energy functions as a
non-convex and convex approach for energy functions two (𝐸2 (Θ, 𝜕Ω))
and three (𝐸3 (Θ, 𝜕Ω)). In all cases the results are better with convex
approaches. An improvement of +0.05, +0.04 and +7 for each metric
for 𝐸2 (Θ, 𝜕Ω). While for 𝐸3 (Θ, 𝜕Ω) the improvements are +0.05,
+0.05 and +3.4 for each metric. Furthermore, using the convex ap-
proach significantly reduces the number of iterations, for example
for energy function two using the proposed convex approach takes
5 iterations (15 seconds) while using the non-convex approach takes
400 iterations (9 minutes). While for energy function three it goes
from 10 iterations (100 seconds) for the convex approach to 1000
iterations (35 minutes).

The article compares both approaches to manually describing 5
images within each dataset. The results are presented in [Table 3],
where both approaches yield similar results, although the 2-Step
approach measures better in metrics for both cases. The figure [Ta-
ble 4] demonstrates the same experiment conducted on the NIH3T3
dataset, which contains images with significant inhomogeneities.
The results reveal that manual labelling is challenging to achieve
accurate results. However, the 2-step approach is more robust and
enhances the results compared to the manual method.

Approach Dice NSD Hausdorff
Manual 0.93 0.04 9.8

3-Step approach 0.94 0.06 13.3
2-Step approach 0.94 0.05 12.8

Table 3: Comparison between the proposals and manual la-
beling on 5 images for the dataset U20S cells.

Approach Dice NSD Hausdorff
Manual 0.87 0.07 12.1

3-Step approach 0.83 0.06 13.3
2-Step approach 0.94 0.05 12.8

Table 4: Comparison between the proposals and manual la-
beling on 5 images for the dataset NIH3T3 cells.

The sensitivity analysis demonstrated that variations in the pa-
rameters do not substantially alter the metrics, indicating that the
algorithm is notably robust.

3.1 Our results
We established a GitHub repository to apply a 3-step approach
using a simplified version of the U20S cell dataset featured in the
referenced article. Access the repository via this link. Our imple-
mentation incorporates the Split Bregman algorithm, investigating
the impact of each image force 𝑟 𝑗 for 𝑗 ∈ 1, 2, 3 post-convergence.

Notably, most level set outputs required normalization to confine
results between 0 and 1. However, the paper lacked a solution
for this issue. To address this, two normalisation methods were
introduced; one by clipping values between 0 and 1 [Appendix A.4:

Figure 3], and the other by normalising all level sets based on the
first calculated level set [Appendix A.4: Figure 6]. Using the initial
approach resulted in a significant information loss, leading the
algorithm to converge towards an incorrect level set. Consequently,
we opted for the alternative approach.

After evaluating the energy functions using the same level set
input, distinct behaviors were detected between the two observed
functions. Notably, it was observed that energies two and three
were inverted. This was prompted by the convergence of energy
three to energy one, as stated in the article. To attain algorithm
convergence, we had to change the sign of both energies. This
raised concerns about potential errors in our implementation of
the energy function or the Bregman algorithm. Nonetheless, we
verified both functions individually. Another point to mention is
that the article does not specify the size of the Gaussian kernel,
which is dependent on the value of sigma. We arbitrarily choose a
value of 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = (2 ∗𝜎 + 1, 2 ∗𝜎 + 1). A full analysis of energy
3 can be seen in the notebook [Appendix A.5].

With these changes, we observed comparable results in the out-
puts of energy functions 2 and 3, except for the 𝛼 selection influ-
encing region definitions. By manipulating the sigma parameter in
energy function 3, we shed light on its role in both local and global
focus [Appendix A.4: Figure 7].

In scrutinizing the 3-step approach, various inaccuracies posed
challenges during our implementation. In this case, we did not
achieve good results when working separately [Appendix A.4: Fig-
ure 8]. The code for each step was generated using an energy solver
(force and convergence algorithm as inputs). Thanks to this imple-
mentation, we have become aware of missing details in the article.
Specifically, we noted that before utilizing energy function 1 (3-Step:
Step 2), several critical aspects were left unexplained. For instance,
the paper did not clarify the criteria for selecting 𝛼 to define re-
gions (Ω = 𝑥 : 𝜙𝑛 (𝑥) > 𝛼), determining the number of segments,
or the necessity of applying a distance function. Lastly, the third
step involves dilation and erosion of the output from the preceding
step, yet the specification of the binary mask required for dilation
was omitted.

Additionally, we attempted a different implementation specifi-
cally for the first energy, which was based on skimage library imple-
mentation. This alternative used a different algorithm to calculate
the differential equation, for this implementation we were able to
completely segmentate one of the cells [Appendix A.4, Figure 9].
Unfortunately, we were unable to adapt this implementation to the
other energy functions due to time constraints. More information
about the work done can be found in Appendix A.6.

4 CONCLUSION (L)
In the realm of medical image segmentation, the primary objec-
tive has traditionally revolved around identifying pixels associated
with organs or lesions to extract valuable information on their
shapes and volumes [6]. The current state-of-the-art solutions in
this domain largely leverage deep learning applications for their
versatility, high performance, and generalization capabilities [2].
However, it’s important to note that these applications are relatively
recent, and a pivotal moment can be traced back to 2012 when neu-
ral networks demonstrated significant performance in computer

4

https://github.com/taguirre19/medical-image-project.git

Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals Medical Image Analysis, November 2023,

vision tasks. Prior to this turning point, segmentation primarily
relied on edge detection filters and mathematical approaches. Since
then, the advent of deep learning has witnessed the emergence of
increasingly sophisticated networks, facilitated by the development
of robust computational infrastructures, GPUs, and the exponen-
tial growth of artificial intelligence. Present-day medical image
segmentation research prominently features Convolutional Neural
Networks (CNNs) in 2-D, 2.5-D, and 3-D dimensions, Recurrent
Neural Networks (RNNs), and attention models [2].

It’s crucial to acknowledge a temporal nuance when assessing
this article in comparison to contemporary research. Published in
2012, this article aligns with earlier studies, offering an insightful
perspective compared to the latest techniques.While their approach
effectively addresses many challenges encountered in medical im-
age segmentation, it presents a handcrafted technique based on
previous studies. The algorithm proposed in the article draws inspi-
ration from various fields, such as region-basedmethods [Equations:
Appendix (13), (15)], Expectation-Maximization (EM), [Equations:
Appendix (14)], region-basedmethods, and Partial Differential Equa-
tions [Equations: (1), (6)], incorporating both the advantages and
drawbacks of each [8]. Notably, their algorithm tackles intensity
inhomogeneities and convexity problems but is computationally
complex and resource-intensive.

The paper describes that managing the automatic analysis was
a challenge for some datasets with strong non homogeneity, but
does not describe how they tackled this problem.

Lastly, a critical observation regarding the article’s structure
concerns the length of the introduction compared to the specificity
of the Gauss-Seidel algorithm implementation. While such an im-
plementation is mentioned, crucial parameters are not specified,
complicating the reproducibility of results. This problem repeats for
other parts of the algorithm like the definition of the parameter 𝑑 of
erosion or the definition of the Gaussian kernel size. This lack of de-
tail hinders the transparency and robustness of the study, impeding
the replication and building upon of the proposed methodology.

In our case, we could not produce a precise implementation of
the algorithm due to insufficient information in the article. Probably
with more time on our hands, we could have attempted to solve the
PDEs using alternative methods. However, we deemed it a deviation
from the objectives of the report.

REFERENCES
[1] [n. d.]. Segmentation definition. ([n. d.]). https://en.wikipedia.org/wiki/Image_

segmentation
[2] Andrés Anaya-Isaza, Leonel Mera-Jiménez, and Martha Zequera-Diaz. 2021. An

overview of deep learning in medical imaging. Informatics in medicine unlocked
26 (2021), 100723.

[3] Tony F Chan and Luminita A Vese. 2001. Active contours without edges. IEEE
Transactions on image processing 10, 2 (2001), 266–277.

[4] Luis Pedro Coelho, Aabid Shariff, and RobertMurphy. 2009. Nuclear Segmentation
in Microscope Cell Images: A Hand-Segmented Dataset and Comparison of
Algorithms. Proceedings / IEEE International Symposium on Biomedical Imaging:
from nano to macro. IEEE International Symposium on Biomedical Imaging 5193098
(06 2009), 518–521. https://doi.org/10.1109/ISBI.2009.5193098

[5] Tom Goldstein, Xavier Bresson, and Stanley Osher. 2010. Geometric applications
of the split Bregman method: segmentation and surface reconstruction. Journal
of scientific computing 45 (2010), 272–293.

[6] Mohammad Hesam Hesamian, Wenjing Jia, Xiangjian He, and Paul Kennedy.
2019. Deep learning techniques for medical image segmentation: achievements
and challenges. Journal of digital imaging 32 (2019), 582–596.

[7] Thouis Jones, Anne Carpenter, and Polina Golland. 2005. Voronoi-Based Seg-
mentation of Cells on Image Manifolds. Lect Notes Comput Sci 3765, 535–543.

https://doi.org/10.1007/11569541_54
[8] Dilpreet Kaur and Yadwinder Kaur. 2014. Various image segmentation techniques:

a review. International Journal of Computer Science and Mobile Computing 3, 5
(2014), 809–814.

[9] Chunming Li, Chiu-Yen Kao, John C Gore, and Zhaohua Ding. 2008. Minimization
of region-scalable fitting energy for image segmentation. IEEE transactions on
image processing 17, 10 (2008), 1940–1949.

[10] Mikaël Rousson and Rachid Deriche. 2002. A variational framework for active
and adaptative segmentation of vector valued images. In Workshop on Motion
and Video Computing, 2002. Proceedings. IEEE, 56–61.

A APPENDIX
A.1 Datasets (T)
Two of the sets from [4] are Hoechst stained cells nuclei, for the first
set there are 48 images with a size of 1349×1030 pixels, in total there
are 1831 U20S Hoechst stained cell nuclei. Whereas for the second
set, there are 49 images with size 1344 × 1024 pixels that contains
2178 NIH3T3vi Hoechst stained nuclei. One disadvantage of the
second set is that the images contain intensity inhomogeneities
and artifacts. The last set extracted from [4] is a set 7 images of of
mouse neuroblastoma cells stained by N1E115 DAPI, each image
has a size of 1392 × 1040 pixels and it can be found 389 cells nuclei,
for this images the ground truth was generated by the authors.

The last set used in [7] is 16 images from a size between 400×400
and 512 × 512 pixels that includes 1280 Drosophila cells nuclei.

A.2 Definitions (L)

𝐸1 (Θ, 𝜕Ω) = 𝜆
(1∑︁
𝑖=0

𝜅𝑖

∫
Ω𝑖

(𝐼 (𝑥) − 𝜇𝑖)2𝑑𝑥
)
+ 𝑃𝑒𝑟 (Ω1) (13)

with Θ = (𝜇0, 𝜇1), and 𝜇0, (resp. 𝜇1) are the mean intensities of
the background Ω0 (resp. foreground Ω1) regions and 𝜕Ω defines
the boundaries between both regions. I(x) is the image intensity
at position x and 𝑃𝑒𝑟 (Ω1) is the perimeter, so, the regularization
term. And finally, 𝜅0, 𝜅1𝑎𝑛𝑑𝜆 are weighting factors.

𝐸2 (Θ, 𝜕Ω) = 𝜆
(1∑︁
𝑖=0

∫
Ω𝑖

−𝑙𝑜𝑔(𝑃 (𝐼 (𝑥) |Ω𝑖))𝑑𝑥
)
+ 𝑃𝑒𝑟 (Ω1) (14)

with Θ = (𝜇0, 𝜇1, 𝜎0, 𝜎1), and 𝜇𝑖 , (resp. 𝜎𝑖) are the mean intensities
(resp. standard deviation) of the Ω𝑖 regions. 𝑃 (𝐼 (𝑥) |Ω𝑖) is the con-
ditional probability that pixel x, with image intensity I(x) belongs
to region Ω𝑖 .

𝐸3 (Θ, 𝜕Ω) = 𝜆
(1∑︁
𝑖=0

𝜅𝑖

∫
Ω𝑖

∫
Ω1
𝐾𝜎 (𝑥 − 𝑦) |𝐼 (𝑦) − 𝑓𝑖 (𝑥) |2𝑑𝑦𝑑𝑥

)
+𝑃𝑒𝑟 (Ω1)

(15)
with Θ = (𝑓0 (𝑥), 𝑓1 (𝑥)), and 𝑓𝑖 (𝑥) represents a local approximation
of the image intensity centered at x in Ω𝑖 . And finally, 𝐾𝜎 is the
gaussian kernel, with 𝜎 > 0 regulating the size of the region in
which local intensities are approximated.

A.3 Metrics Formulas (T)
The Dice coefficient is defined as follows:

Dice(𝑅, 𝑆) = 2|𝑅 ∩ 𝑆 |
|𝑅 | + |𝑆 | (16)

viNIH: NIH Swiss mouse embryo & 3T3: 3-day transfer, inoculum 3×105 cells.
5

https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Image_segmentation
https://doi.org/10.1109/ISBI.2009.5193098
https://doi.org/10.1007/11569541_54

Medical Image Analysis, November 2023, MVA et al.

where𝑅 is the binary reference image, and 𝑆 is the binary segmented
image.

The normalized sum of distance(NSD) can be expressed as fol-
lows:

𝑁𝑆𝐷 (𝑅, 𝑆) =
∑
𝑖∈𝑅∪𝑆/𝑅∩𝑆 𝐷 (𝑖)∑

𝑖∈𝑅∪𝑆 𝐷 (𝑖) (17)

where 𝐷 (𝑖) is the minimal Euclidean distance of pixel 𝑖 to the
contour of the reference object. The Hausdorff distance is defined
as:

ℎ(𝑅, 𝑆) = max
𝑖∈𝑆𝑐

{𝐷 (𝑖)} (18)

with 𝑆𝑐 being the contour of the segmented object.

A.4 Figures

Figure 3: Level Set Obtained using Max Min normalization
vs Without normalization

Figure 4: Forces images implementation

Figure 5: Forces images implementation Inverting Force 2
and Force 3

Figure 6: Normalization of each level field

Figure 7: Effect of 𝜎 on 𝐸3 (Θ, 𝜕)

Figure 8: Level Set obtained by using each energy function
with Split Bregman.

Figure 9: Level Set obtained using energy function 1 with
Split Bregman and altenative.

A.5 Energy Evaluation Notebook

6

import	matplotlib.pyplot	as	plt
import	cv2	as	cv
import	numpy	as	np

from	source.split_bregman_gcs	import	SplitBregmanGCS,	NormalizationMode
from	source.utils	import	normalization_automatic
from	source.image_force	import	Force1,	Force2,	Force3

Evaluation	Energy	Functions
initial_level_set	=	cv.imread('test_images/simplify_cells_distance_multiply_10.tif',	cv.CV_8U)
initial_level_set	=	normalization_automatic(initial_level_set)
image	=	cv.imread('test_images/simplify_cells.tif',	cv.CV_16U)	
image	=	normalization_automatic(image)

k0	=	1
k1	=	1
sigma	=	1
force1	=	Force1(image,	k0=k0,	k1=k1)
r1	=	force1.compute_force(initial_level_set>0)
force2	=	Force2(image)
r2	=	force2.compute_force(initial_level_set>0)
force3	=	Force3(image,	k0=k0,	k1=k1,	sigma=sigma)
r3	=	force3.compute_force(initial_level_set>0)

fig,	ax	=	plt.subplots(1,5,	figsize=(20,5))
ax[0].set_title('Input	Image')
pos	=	ax[0].imshow(image,	'gray')
fig.colorbar(pos,	ax=ax[0])

ax[1].set_title('Initial	Level	Set')
pos	=	ax[1].imshow(initial_level_set,	'gray')
fig.colorbar(pos,	ax=ax[1])

ax[2].set_title('Force	1	with	initial	Level	Set')
pos	=	ax[2].imshow(r1,	'gray')
fig.colorbar(pos,	ax=ax[2])

ax[3].set_title('Force	2	with	initial	Level	Set')
pos	=	ax[3].imshow(r2,	'gray')
fig.colorbar(pos,	ax=ax[3])

ax[4].set_title('Force	3	with	initial	Level	Set')
pos	=	ax[4].imshow(r3,	'gray')
fig.colorbar(pos,	ax=ax[4])
plt.show()

Force	1
The	force,	denoted	as	r1,	is	determined	by	the	following	mathematical	expression:

r1 = κ1(I(x) − μ1)
2 − κ0(I(x) − μ0)

2

Here,	μ1	represents	the	mean	value	of	the	region	inside	the	contour,	and	μ0	denotes	the	mean	value	of	the	region	outside.

Force	2
Definition:

7

The	force,	denoted	as	r2,	is	expressed	as	follows:

r2 = log(P(I(x) | Ω1) − log(P(I(x) | Ω0)

where	P(I(x) | Ωi) =
1

2πσ2
i

e −
(I (x) −μi)

2

2σ2i

For	simplicity	we	rewrite	the	operation	as:

r2 = log
1

2πσ21
−
(I(x) − μ1)

2

2σ21
− log

1

2πσ20
+
(I(x) − μ0)

2

2σ20

NOTE:	Force	2	is	inverted(line	54)	to	simulate	the	behavior	of	force	1.

Force	3
The	formulation	of	this	force	is	follows:

r3 = κ1∫Kσ(y − x) | I(x) − f1(y) | 2dy − κ0∫Kσ(y − x) | I(x) − f0(y) | 2dy

where	Kσ(u) =
1

√2πσ2
e −

| u | 2

2σ2 	is	a	Gaussian	Kernel,	and	the	functions	f0	and	f1	are	the	inside	and	outside	approximations	of	the	image

centered	at	each	point,	defined	by:

f0 =
Kσ(x) ∗ [(1 − H(ϕ(x)))I(x)]
Kσ(x) ∗ [1 − H(ϕ(x))]

f1 =
Kσ(x) ∗ [H(ϕ(x))I(x)]
Kσ(x) ∗ H(ϕ(x))

For	simplicity,	in	the	code,	we	removed	the	use	of	Heaviside	function	by	using	masks.

Let's	consider	Min	the	image	mask	that	is	one	when	we	are	inside	the	region,	and	Mout	the	image	mask	that	is	one	when	we	are	outside
the	region.	Given	these	difiniations	we	can	define:	Iin	and	Iout	as	their	respective	masked	images.

We	can	rewrite	the	equations	fin(f1)	and	fout(f0)	as:

fin =
Kσ(x) ∗ Iin(x)
Kσ(x) ∗ Min(x)

fout =
Kσ(x) ∗ Iout(x)
Kσ(x) ∗ Mout(x)

The	convolution	on	the	denominator	will	be	always	its	corresponding	mask,	because	Min	and	Mout	are	arrays	with	only	0	and	1.	Then,	we
can	rewrite:

fin = Kσ(x) ∗ Iin(x)
fout = Kσ(x) ∗ Iout(x)

Then	the	force	could	be	define	as:

r3(x) = κ1∑
y∈ interior

Kσ(y − x) | I(x) − fin(y) |
2 − κ0∑

y∈ outside
Kσ(y − x) | I(x) − fout(y) |

2

r3(x) = κ1∑
y∈ interior

Kσ(y − x)[I
2(x) − 2I(x)fin(y) + f

2
in(y)] − κ0∑

y∈ outside
Kσ(y − x)[I

2(x) − 2I(x)fout(y) + f
2
out(y)]

r3(x) = (κ1 − κ0)∑
y∈ image

Kσ(y − x)I
2(x) − 2κ1I(x)∑

y∈ inside
Kσ(y − x)fin(y) + 2κ0I(x)∑

y∈ outside
Kσ(y − x)fout(y) + κ1∑

y∈ inside
Kσ(y − x)f

2
in(y) − κ0∑

y∈ outside
Kσ(y − x)f

2
out(y

r3(x) = (κ1 − κ0)(Kσ ∗ I2)(x) − 2κ1I(x)[(Kσ ∗ fin)(x)] + 2κ0I(x)[(Kσ ∗ fout)(x)] + κ1(Kσ ∗ f2in)(x) − κ0(Kσ ∗ f2out)(x)

In	the	usual	definition	of	Gaussian	Kernel,	we	have	two	parameters	 kernel_size 	and	 sigma .	However,	in	the	article,	the	authors
consider	only	sigma	and	they	afirm	that	sigma	control	the	size	of	the	region	in	which	the	image	intensities	are	approximated.	Taking	this
into	consideration,	in	our	implementation,	we	decide	that	 kernel_size	=	(2*sigma+1,	2*sigma+1) ,	to	obtain	a	valid	kernel	size
for	every	sigma	(it	has	to	be	an	integer).

Local	Function	Approximation

f_in	=	force3.f_in()
f_out	=	force3.f_out()
fig,	ax	=	plt.subplots(1,4,	figsize=(15,5))

√

(√) (√)

8

ax[0].set_title('Input	Image')
pos	=	ax[0].imshow(image,	'gray')
fig.colorbar(pos,	ax=ax[0])

ax[1].set_title('Initial	Level	Set')
pos	=	ax[1].imshow(initial_level_set,	'gray')
fig.colorbar(pos,	ax=ax[1])

ax[2].set_title('f_in')
pos	=	ax[2].imshow(f_in,	'gray')
fig.colorbar(pos,	ax=ax[2])

ax[3].set_title('f_out')
pos	=	ax[3].imshow(f_out,	'gray')
fig.colorbar(pos,	ax=ax[3])

<matplotlib.colorbar.Colorbar	at	0x1a27ecd1610>

Observation

Visually	the	aproximation	for	the	interior	seems	to	be	coherent.	However,	the	approximation	for	the	outside	of	the	level	set	has	a	little
artifact	at	the	left	corner	that	is	probably	an	border	artifact.

sigma_list	=	np.arange(1,	25,	4)
vmin_in,	vmax_r3	=	0,	1
vmin_out,	vmax_out	=	0,	.15
N	=	len(sigma_list)
fig,	ax	=	plt.subplots(2,N,	figsize=(5*(N-1),10))
for	i,	sigma	in	enumerate(sigma_list[::-1]):
				force3	=	Force3(image,	k0=k0,	k1=k1,	sigma=sigma)
				_	=	force3.compute_force(initial_level_set>0)
				f_in	=	force3.f_in()
				f_out	=	force3.f_out()

				ax[0,	i].set_title(f'f_in	sigma	=	{sigma:.2f}')
				pos	=	ax[0,	i].imshow(f_in,	'gray',	vmin=vmin_in,	vmax=vmax_r3)
				fig.colorbar(pos,	ax=ax[0,	i])

				ax[1,	i].set_title(f'f_out	with	sigma	=	{sigma:.2f}')
				pos	=	ax[1,	i].imshow(f_out,	'gray',	vmin=vmin_out,	vmax=vmax_out)
				fig.colorbar(pos,	ax=ax[1,	i])

				if	np.min(f_in)	<	vmin_in	or	np.max(f_in)	>	vmax_r3:
								print(f'Visualization	error!!	The	selected	vmin	and	vmax	for	the	region	inside	are	not	valid')	
				if	np.min(f_out)	<	vmin_out	or	np.max(f_out)	>	vmax_r3:
								print(f'Visualization	error!!	The	selected	vmin	and	vmax	for	the	region	outside	are	not	valid')
				

9

As	we	expected,	when	we	lower	the	parameter	σ,	our	functions	fin	and	fout	represent	a	more	local	approximation.	Thus,	when	we
decrease	the	σ	parameter,	the	sum	of	fin + fout	approximates	I.

Evolution	of	the	force

If	we	consider	k1 = k2	as	they	do	in	the	paper.	Using	convolution	properties	we	can	rewrite	the	force	like:

r3(x) = − 2κI(x)[(Kσ ∗ fin)(x)] + 2κI(x)[(Kσ ∗ fout)(x)] + κ(Kσ ∗ f2in)(x) − κ(Kσ ∗ f2out)(x)

r3(x) = − 2κI(x)[(Kσ ∗ (fin − fout)(x)] + κ(Kσ ∗ (f2in + f
2
out))(x)

NOTE:	Force	3	is	inverted(line	153)	to	simulate	the	behavior	of	force	1.

sigma_list	=	np.arange(1,	80,	10)
N	=	len(sigma_list)
vmin_in,	vmax_r3	=	np.min(r1),	np.max(r1)
fig,	ax	=	plt.subplots(1,N,	figsize=(5*(N-1),5))
for	i,	sigma	in	enumerate(sigma_list[::-1]):
				force3	=	Force3(image,	k0=k0,	k1=k1,	sigma=sigma)
				r3	=	force3.compute_force(initial_level_set>0)
				ax[i].set_title(f'Force	3	sigma	=	{sigma:.2f}')
				pos	=	ax[i].imshow(r3,	'gray',	vmin=vmin_in,	vmax=vmax_r3)
				fig.colorbar(pos,	ax=ax[i])

Observation

In	our	current	case,	the	region	outside	is	practically	zero,	so	ONLY	in	this	example	fin − fout ≈ I	for	lower	values	of	σ,	which	means	we	are
getting	values	similar	to	zero	in	our	force.

The	Split	Bregman	Method	Applied	to	Globally	Convex
Segmentation
#	Default	parameters	for	method
lambda_value	=	1
nu_value	=	0.5
epsilon_value=0.1
gs_error=1e-3

Using	force	1

force1	=	Force1(image,	k1=k1,	k0=k0)
segmentator	=	SplitBregmanGCS(
				force1,
				lambda_value=lambda_value,
				nu_value=nu_value,

10

				epsilon_value=epsilon_value,
				gs_error=gs_error,
				mode=NormalizationMode.Clip,
				debug=True)

last_level_set,	last_level_set_no_normalized	=	segmentator.run(initial_level_set)

-----------------	Iteration	error	0.8700236246608009	------------------------
Gauss	Seidel	Iteration:			0%|										|	0/10000	[00:00<?,	?it/s]Gauss	Seidel	Iteration:		14%|█▍								|	1402/1
0000	[00:10<01:04,	133.51it/s]
The	solution	converged	after	1402	iterations
-----------------	Iteration	error	0.6012317998865605	------------------------
Gauss	Seidel	Iteration:		14%|█▍								|	1446/10000	[00:11<01:07,	127.53it/s]
The	solution	converged	after	1446	iterations
-----------------	Iteration	error	0.25548236461147417	------------------------
Gauss	Seidel	Iteration:		14%|█▍								|	1449/10000	[00:10<01:04,	131.76it/s]
The	solution	converged	after	1449	iterations
-----------------	Iteration	error	0.17934898814053488	------------------------
Gauss	Seidel	Iteration:		14%|█▍								|	1447/10000	[00:10<01:04,	132.26it/s]
The	solution	converged	after	1447	iterations
-----------------	Iteration	error	0.13902397334859312	------------------------
Gauss	Seidel	Iteration:		14%|█▍								|	1446/10000	[00:10<01:00,	142.04it/s]
The	solution	converged	after	1446	iterations
-----------------	Iteration	error	0.1205376982865722	------------------------
Gauss	Seidel	Iteration:		14%|█▍								|	1444/10000	[00:10<01:04,	132.74it/s]
The	solution	converged	after	1444	iterations
-----------------	Iteration	error	0.12171601749139245	------------------------
Gauss	Seidel	Iteration:		14%|█▍								|	1443/10000	[00:11<01:07,	127.23it/s]
The	solution	converged	after	1443	iterations
-----------------	Iteration	error	0.11585421578858164	------------------------
Gauss	Seidel	Iteration:		14%|█▍								|	1443/10000	[00:10<00:59,	142.68it/s]
The	solution	converged	after	1443	iterations
-----------------	Iteration	error	0.10533201020569914	------------------------
Gauss	Seidel	Iteration:		14%|█▍								|	1442/10000	[00:11<01:07,	126.83it/s]
The	solution	converged	after	1442	iterations
-----------------	Iteration	error	0.10720064105625197	------------------------
Gauss	Seidel	Iteration:		14%|█▍								|	1441/10000	[00:11<01:05,	130.57it/s]
The	solution	converged	after	1441	iterations
Converged	with	an	error	0.09124782974391564

11

Observation

Looking	at	the	error	graphs	we	can	say	that	the	algorithm	coverge,	so	we	should	be	able	to	have	a	good	segmentation

fig,	ax	=	plt.subplots(1,2)
ax[0].set_title('Normalized	Level	Field')
pos	=	ax[0].imshow(last_level_set,	'gray')
ax[0].contour(last_level_set)
ax[1].set_title('Level	Field')
ax[1].imshow(last_level_set_no_normalized,	'gray')
cs	=	ax[1].contour(last_level_set_no_normalized)
ax[1].clabel(cs,	fmt='%2.1f',	colors='blue',	fontsize=9)

<a	list	of	11	text.Text	objects>

Observation

In	the	article	the	normalization	of	the	level	set	is	not	specified.	First	we	followed	The	suggestion	in	T.Goldstein,	X.Bresson,	and	S.Osher.
Geometric	applications	of	the	split	Bregman	method,	where	the	level	field	is	clipped	between	0	and	1.	Clearly	this	method	is	not	good,
because	we	lose	important	information,	in	the	graph	above	we	can	see	that	without	normalization	we	can	see	coherent	diferent	level	sets
but	all	their	values	are	greater	than	1.	In	the	code	this	normalization	mode	is:	 NormalizationMode.Clip

12

Alternative

Then,	we	modify	the	normalization	by	clipping	all	the	level	set	using	the	min	and	max	value	of	the	first	level
set(NormalizationMode.FirstImageParameters).

force1	=	Force1(image,	k1=k0,	k0=k1)
segmentator	=	SplitBregmanGCS(
				force1,
				lambda_value=lambda_value,
				nu_value=nu_value,
				epsilon_value=epsilon_value,
				gs_error=gs_error,
				mode=NormalizationMode.FirstImageParameters,
				debug=True)

last_level_set,	last_level_set_no_normalized	=	segmentator.run(initial_level_set)

-----------------	Iteration	error	0.8700236246608009	------------------------
Gauss	Seidel	Iteration:			0%|										|	0/10000	[00:00<?,	?it/s]Gauss	Seidel	Iteration:		14%|█▍								|	1402/1
0000	[00:09<01:00,	143.22it/s]
The	solution	converged	after	1402	iterations
-----------------	Iteration	error	0.18679710819589943	------------------------
Gauss	Seidel	Iteration:		14%|█▍								|	1408/10000	[00:10<01:06,	128.29it/s]
The	solution	converged	after	1408	iterations
Converged	with	an	error	0.0911956154497904

fig,	ax	=	plt.subplots(1,2)
ax[0].set_title('Normalized	Level	Field')
ax[0].imshow(last_level_set,	'gray')

13

cs	=	ax[0].contour(last_level_set)
ax[0].clabel(cs,	fmt='%2.1f',	colors='blue',	fontsize=9)
ax[1].set_title('Level	Field')
ax[1].imshow(last_level_set_no_normalized,	'gray')
cs	=	ax[1].contour(last_level_set_no_normalized)
ax[1].clabel(cs,	fmt='%2.1f',	colors='blue',	fontsize=9)

<a	list	of	7	text.Text	objects>

alpha	=	0.55
level_set_at_alpha	=	last_level_set	>	alpha
fig,	ax	=	plt.subplots(1,1)
ax.set_title(f'Input	Image	level	set	at	{alpha}')

ax.imshow(image,	cmap='gray')
ax.imshow(level_set_at_alpha,	'jet',	interpolation='none',	alpha=0.5)

<matplotlib.image.AxesImage	at	0x1a2815ca210>

Using	Energy	2

force2	=	Force2(image)
segmentator	=	SplitBregmanGCS(
				force2,
				lambda_value=lambda_value,
				nu_value=nu_value,
				epsilon_value=epsilon_value,
				gs_error=gs_error,
				mode=NormalizationMode.FirstImageParameters,
				debug=True)

last_level_set,	last_level_set_no_normalized	=	segmentator.run(initial_level_set)

-----------------	Iteration	error	0.8700236246608009	------------------------
Gauss	Seidel	Iteration:			0%|										|	0/10000	[00:00<?,	?it/s]Gauss	Seidel	Iteration:		46%|████▌					|	4566/1
0000	[00:33<00:40,	135.62it/s]
The	solution	converged	after	4566	iterations
-----------------	Iteration	error	0.24554837801444837	------------------------
Gauss	Seidel	Iteration:		41%|████						|	4064/10000	[00:31<00:46,	128.94it/s]

14

The	solution	converged	after	4064	iterations
-----------------	Iteration	error	0.3239076957516847	------------------------
Gauss	Seidel	Iteration:		41%|████						|	4064/10000	[00:29<00:43,	137.37it/s]
The	solution	converged	after	4064	iterations
Converged	with	an	error	8.436565703678474e-07

fig,	ax	=	plt.subplots(1,2)
ax[0].set_title('Normalized	Level	Field')
ax[0].imshow(last_level_set,	'gray')
cs	=	ax[0].contour(last_level_set)
ax[0].clabel(cs,	fmt='%2.1f',	colors='blue',	fontsize=9)
ax[1].set_title('Level	Field')
ax[1].imshow(last_level_set_no_normalized,	'gray')
cs	=	ax[1].contour(last_level_set_no_normalized)
ax[1].clabel(cs,	fmt='%2.1f',	colors='blue',	fontsize=9)

<a	list	of	8	text.Text	objects>

15

alpha	=	0.2
level_set_at_alpha	=	last_level_set	>	alpha
fig,	ax	=	plt.subplots(1,1)
ax.set_title(f'Input	Image	level	set	at	{alpha}')

ax.imshow(image,	cmap='gray')
ax.imshow(level_set_at_alpha,	'jet',	interpolation='none',	alpha=0.5)

<matplotlib.image.AxesImage	at	0x1a27be8bb50>

Observation

In	this	example	we	don't	see	un	improvement	over	using	energy	3.	But	for	this	case	we	had	to	lower	the	threshold	α.

Using	Energy	3

sigma	=	5
k0	=	1
k1=	1

force3	=	Force3(image,	k0=k0,	k1=k1,	sigma=sigma)
segmentator	=	SplitBregmanGCS(
				force3,
				lambda_value=lambda_value,

16

				nu_value=nu_value,
				epsilon_value=epsilon_value,
				gs_error=gs_error,
				mode=NormalizationMode.FirstImageParameters,
				debug=True)

last_level_set,	last_level_set_no_normalized	=	segmentator.run(initial_level_set)

-----------------	Iteration	error	0.8700236246608009	------------------------
Gauss	Seidel	Iteration:			0%|										|	17/10000	[00:00<00:59,	168.77it/s]Gauss	Seidel	Iteration:		10%|▉									
|	975/10000	[00:04<00:37,	237.68it/s]
The	solution	converged	after	975	iterations
-----------------	Iteration	error	0.33144708330427264	------------------------
Gauss	Seidel	Iteration:		10%|▉									|	959/10000	[00:04<00:39,	227.36it/s]
The	solution	converged	after	959	iterations
Converged	with	an	error	0.030406511799383272

fig,	ax	=	plt.subplots(1,2)
ax[0].set_title('Normalized	Level	Field')
ax[0].imshow(last_level_set,	'gray')
cs	=	ax[0].contour(last_level_set)
ax[0].clabel(cs,	fmt='%2.1f',	colors='blue',	fontsize=9)
ax[1].set_title('Level	Field')
ax[1].imshow(last_level_set_no_normalized,	'gray')
cs	=	ax[1].contour(last_level_set_no_normalized)
ax[1].clabel(cs,	fmt='%2.1f',	colors='blue',	fontsize=9)

<a	list	of	10	text.Text	objects>

17

alpha	=	0.9
level_set_at_alpha	=	last_level_set	>	alpha
fig,	ax	=	plt.subplots(1,1)
ax.set_title(f'Input	Image	level	set	at	{alpha}')

ax.imshow(image,	cmap='gray')
ax.imshow(level_set_at_alpha,	'jet',	interpolation='none',	alpha=0.5)

<matplotlib.image.AxesImage	at	0x2db70aac2d0>

Observation

In	all	three	cases,	the	cell	segmentation	is	not	functioning	properly.	Each	energy	should	be	capable	of	individually	segmenting	the	cells.	It
is	evident	that	there	is	an	error	in	the	implementation	of	the	energy	definition	or	convergence	algorithm.

sigma	=	5
k0	=	1
k1=	1
#	Default	parameters	for	method
lambda_value	=	1
nu_value	=	0.5
epsilon_value=0.1
gs_error=1e-3

segmentator	=	SplitBregmanGCS(
				force1,
				lambda_value=lambda_value,
				nu_value=nu_value,
				epsilon_value=epsilon_value,
				gs_error=gs_error,
				mode=NormalizationMode.FirstImageParameters,
				debug=True)

last_level_set_1,	_	=	segmentator.run(initial_level_set)

-----------------	Iteration	error	0.8700236246608009	------------------------

18

Gauss	Seidel	Iteration:			0%|										|	5/10000	[00:00<03:45,	44.37it/s]Gauss	Seidel	Iteration:		14%|█▍								
|	1402/10000	[00:30<03:07,	45.96it/s]
The	solution	converged	after	1402	iterations
-----------------	Iteration	error	0.18679710819589943	------------------------
Gauss	Seidel	Iteration:		14%|█▍								|	1408/10000	[00:33<03:25,	41.85it/s]
The	solution	converged	after	1408	iterations
Converged	with	an	error	0.0911956154497904

segmentator	=	SplitBregmanGCS(
				force2,
				lambda_value=lambda_value,
				nu_value=nu_value,
				epsilon_value=epsilon_value,
				gs_error=gs_error,
				mode=NormalizationMode.FirstImageParameters,
				debug=True)

last_level_set_2,	_	=	segmentator.run(initial_level_set)

-----------------	Iteration	error	0.8700236246608009	------------------------
Gauss	Seidel	Iteration:			0%|										|	5/10000	[00:00<03:43,	44.76it/s]Gauss	Seidel	Iteration:		46%|████▌					
|	4566/10000	[01:17<01:32,	58.57it/s]
The	solution	converged	after	4566	iterations
-----------------	Iteration	error	0.24554837801444837	------------------------
Gauss	Seidel	Iteration:		41%|████						|	4064/10000	[01:20<01:57,	50.55it/s]
The	solution	converged	after	4064	iterations
-----------------	Iteration	error	0.3239076957516847	------------------------
Gauss	Seidel	Iteration:		41%|████						|	4064/10000	[01:20<01:56,	50.74it/s]

19

The	solution	converged	after	4064	iterations

Converged	with	an	error	8.436565703678474e-07

force3	=	Force3(image,	k0=k0,	k1=k1,	sigma=sigma)
segmentator	=	SplitBregmanGCS(
				force3,
				lambda_value=lambda_value,
				nu_value=nu_value,
				epsilon_value=epsilon_value,
				gs_error=gs_error,
				mode=NormalizationMode.FirstImageParameters,
				debug=True)

last_level_set_3,	_	=	segmentator.run(initial_level_set)

-----------------	Iteration	error	0.8700236246608009	------------------------
Gauss	Seidel	Iteration:			0%|										|	9/10000	[00:00<06:15,	26.62it/s]Gauss	Seidel	Iteration:		10%|▉									
|	975/10000	[00:27<04:12,	35.72it/s]
The	solution	converged	after	975	iterations
-----------------	Iteration	error	0.33144708330427264	------------------------
Gauss	Seidel	Iteration:		10%|▉									|	959/10000	[00:23<03:42,	40.67it/s]
The	solution	converged	after	959	iterations
Converged	with	an	error	0.030406511799383272

20

alpha_1	=	0.65
alpha_2	=	0.2
alpha_3	=	0.95
fig,	ax	=	plt.subplots(1,3,	figsize=(15,8))

ax[0].set_title(f'Split	Bregman	with	Force	1')
ax[0].imshow(image,	cmap='gray')
ax[0].imshow(last_level_set_1	>	alpha_1,	'jet',	interpolation='none',	alpha=0.5)
ax[0].set_axis_off()

ax[1].set_title('Split	Bregman	with	Force	2')
ax[1].imshow(image,	cmap='gray')
ax[1].imshow(last_level_set_2	>	alpha_2,	'jet',	interpolation='none',	alpha=0.5)
ax[1].set_axis_off()

ax[2].set_title('Split	Bregman	with	Force	3')
ax[2].imshow(image,	cmap='gray')
ax[2].imshow(last_level_set_3	>	alpha_3,	'jet',	interpolation='none',	alpha=0.5)
ax[2].set_axis_off()

21

Loading	[MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

22

Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals Medical Image Analysis, November 2023,

A.6 Alternative Implementation Notebook

23

import	matplotlib.pyplot	as	plt
import	cv2	as	cv
import	numpy	as	np

from	source.split_bregman_gcs	import	SplitBregmanGCS,	NormalizationMode
from	source.utils	import	normalization_automatic
from	source.image_force	import	Force1,	Force2,	Force3

Evaluation	Energy	Functions
initial_level_set	=	cv.imread('test_images/simplify_cells_initial_mask_2.png',	cv.CV_8U)
initial_level_set	=	normalization_automatic(initial_level_set)
image	=	cv.imread('test_images/simplify_cells.tif',	cv.CV_16U)	
image	=	normalization_automatic(image)

k0	=	1
k1	=	1
sigma	=	8
force1	=	Force1(image,	k0=k0,	k1=k1)
r1	=	force1.compute_force(initial_level_set>0)
force2	=	Force2(image)
r2	=	force2.compute_force(initial_level_set>0)
force3	=	Force3(image,	k0=k0,	k1=k1,	sigma=sigma)
r3	=	force3.compute_force(initial_level_set>0)

	

fig,	ax	=	plt.subplots(1,5,	figsize=(20,5))
ax[0].set_title('Input	Image')
pos	=	ax[0].imshow(image,	'gray')
fig.colorbar(pos,	ax=ax[0])

ax[1].set_title('Initial	Level	Set')
pos	=	ax[1].imshow(initial_level_set,	'gray')
fig.colorbar(pos,	ax=ax[1])

ax[2].set_title('Force	1	with	initial	Level	Set')
pos	=	ax[2].imshow(r1,	'gray')
fig.colorbar(pos,	ax=ax[2])

ax[3].set_title('Force	2	with	initial	Level	Set')
pos	=	ax[3].imshow(r2,	'gray')
fig.colorbar(pos,	ax=ax[3])

ax[4].set_title('Force	3	with	initial	Level	Set')
pos	=	ax[4].imshow(r3,	'gray')
fig.colorbar(pos,	ax=ax[4])
plt.show()

Alternative	PDE	Solution
#	Default	parameters	for	method
lambda_value	=	1
nu_value	=	0.5
epsilon_value=0.1
gs_error=1e-3

Checking	with	every	force	indepently

24

from	source.pde_solver	import	PDESolver
segmentator_1	=	PDESolver(force1,	lambda_value,	epsilon_value)
last_level_set_1	=	segmentator_1.run(initial_level_set)

-----------------	Iteration	error	0.7019015716797695	------------------------
Convergence	with	0.7019015716797695

segmentator_2	=	PDESolver(force2,	lambda_value,	epsilon_value)
last_level_set_2	=	segmentator_2.run(initial_level_set)

-----------------	Iteration	error	0.7019015716797695	------------------------
Convergence	with	0.7019015716797695

segmentator_3	=	PDESolver(force3,	lambda_value,	epsilon_value)
last_level_set_3	=	segmentator_3.run(initial_level_set)

-----------------	Iteration	error	0.7019015716797695	------------------------
Convergence	with	0.7019015716797695

fig,	ax	=	plt.subplots(1,3,	figsize=(10,5))
ax[0].set_title('Level	Field	1')
ax[0].imshow(last_level_set_1,	'gray')
cs	=	ax[0].contour(last_level_set_1)
ax[0].clabel(cs,	fmt='%2.1f',	colors='blue',	fontsize=9)

ax[1].set_title('Level	Field	2')
ax[1].imshow(last_level_set_2,	'gray')
cs	=	ax[1].contour(last_level_set_2)
ax[1].clabel(cs,	fmt='%2.1f',	colors='blue',	fontsize=9)

ax[2].set_title('Level	Field	3')
ax[2].imshow(last_level_set_3,	'gray')
cs	=	ax[2].contour(last_level_set_3)
ax[2].clabel(cs,	fmt='%2.1f',	colors='blue',	fontsize=9)

<a	list	of	18	text.Text	objects>

Observation

Now	we	are	able	to	do	a	correct	segmentation	as	expected.

alpha	=	1
#level_set_at_alpha	=	last_level_set	>	alpha
fig,	ax	=	plt.subplots(1,3)

ax[0].imshow(image,	cmap='gray')
ax[0].imshow(last_level_set_1	>	alpha,	'jet',	interpolation='none',	alpha=0.5)

ax[1].imshow(image,	cmap='gray')
ax[1].imshow(last_level_set_2	>	alpha,	'jet',	interpolation='none',	alpha=0.5)

ax[2].imshow(image,	cmap='gray')
ax[2].imshow(last_level_set_3	>	alpha,	'jet',	interpolation='none',	alpha=0.5)

<matplotlib.image.AxesImage	at	0x21f8a47f1d0>

segmentator	=	SplitBregmanGCS(

25

				force1,
				lambda_value=lambda_value,
				nu_value=nu_value,
				epsilon_value=epsilon_value,
				gs_error=gs_error,
				mode=NormalizationMode.FirstImageParameters,
				debug=True)

last_level_set_bregman,	_	=	segmentator.run(initial_level_set)

-----------------	Iteration	error	0.7019015716797695	------------------------
Gauss	Seidel	Iteration:			0%|										|	0/10000	[00:00<?,	?it/s]Gauss	Seidel	Iteration:		14%|█▍								|	1400/1
0000	[00:08<00:52,	162.71it/s]
The	solution	converged	after	1400	iterations
-----------------	Iteration	error	0.4900529663099459	------------------------
Gauss	Seidel	Iteration:		14%|█▍								|	1408/10000	[00:07<00:47,	180.05it/s]
The	solution	converged	after	1408	iterations
Converged	with	an	error	0.09202629172143907

alpha_1	=	0.65
alpha_2	=	1
fig,	ax	=	plt.subplots(1,2)

ax[0].set_title(f'Split	Bregman	with	Force	1')
ax[0].imshow(image,	cmap='gray')
ax[0].imshow(last_level_set_bregman	>	alpha_1,	'jet',	interpolation='none',	alpha=0.5)
ax[0].set_axis_off()

ax[1].set_title('Alternative	with	Force	1')
ax[1].imshow(image,	cmap='gray')

26

ax[1].imshow(last_level_set_1	>	alpha_2,	'jet',	interpolation='none',	alpha=0.5)
ax[1].set_axis_off()

	

Loading	[MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

27

	1 Introduction (L)
	2 Methods (L)
	2.1 The Split Bregman Method Applied to Globally Convex Segmentation (T)
	2.2 Energy functions (L)
	2.3 Step by step implementations (L)

	3 Results (T)
	3.1 Our results

	4 Conclusion (L)
	References
	A Appendix
	A.1 Datasets (T)
	A.2 Definitions (L)
	A.3 Metrics Formulas (T)
	A.4 Figures
	A.5 Energy Evaluation Notebook
	A.6 Alternative Implementation Notebook

