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1 INTRODUCTION
Medical ultrasonography serves as a crucial imaging modality in

clinical diagnosis, relying on the principle of acoustic impedance.

This tool employs high-frequency acoustic waves (>20kHz) emitted

by a machine to interact with organs and tissues, subsequently

producing echoes. The distinctive echo patterns are harnessed to

compute a detailed 2-D image of the body tissue. This technique is

indispensable due to its cost-effectiveness, non-invasiveness, and

rapid results, providing real-time images of body tissues [1]. How-

ever, the efficiency of medical ultrasonography can be impacted

by various constraints, including speckle, acoustic shadows, arti-

facts, etc. This study specifically addresses the issue of speckle, a

granular multiplicative noise that degrades texture information and

obscures details such as lines, edges, and boundaries in an image.

This noise complicates segmentation tasks and feature extraction.

Speckle arises from the interference of echoes from unresolvable

scatterers randomly dispersed throughout the image. Despite its

controversial nature, speckle also encapsulates texture information

dependent on anatomical tissues. Hence, despeckling has become a

crucial pre-processing step to prevent the loss of texture informa-

tion. This step consists in removing speckle noise while preserving

the essential features of the image.

Previous research has extensively explored the challenges as-

sociated with denoising ultrasound images, categorizing such ef-

forts into two main approaches: single scale and multi-scale. Single

scale methods involve the direct application of filters, including

the Weiner filter, linear filters (e.g., median filter), and non-linear

filters (e.g., statistic filters). Conversely, multi-scale techniques op-

erate on a set of sub-images derived from an original image, which

is the primary focus of this paper. This approach enables a more

profound understanding of frequency amplitude variations along

three directions (horizontal, vertical, and diagonal) [2]. Multi-scale

applications encompass two key steps: acquiring sub-image sets

and despeckling. Techniques like ridgelet, curvelet, and shearlet can

be used for sub-image generation, but this paper specifically high-

lights the efficacy of the wavelet transform. This approach allows

for simultaneous high-resolution analysis of time and frequency

localized features, making it particularly adaptable to transient sig-

nals [3]. In addressing despeckling, the authors utilize a wavelet

thresholding technique, involving themodification of wavelet coeffi-

cients according to a specified threshold value. However, challenges

arise from these implementations, including information loss, com-

putationally complex thresholds, and the difficulty of achieving

simultaneous enhancement and despeckling. The objective is to

devise a straightforward and efficient approach for determining an

adaptive threshold.

The authors introduce a novel multi-scale and adaptive technique

featuring a unique thresholding function, which progressively re-

duces wavelet coefficients to zero when their values fall below a

specified threshold. This innovative approach is grounded in two

key principles: firstly, leveraging the statistical properties of the

image across various decomposition levels, and secondly, operat-

ing under the assumption that speckle predominantly manifests in

low-valued wavelet coefficients [4].

2 METHODS
The authors introduced a multi-scale approach to tackle ultrasound

image despeckling. Nevertheless, two previous assumptions are

considered, gaussian nature of noise and concentration of the ma-

jority of high frequency components in diagonal sub-band. The

procedure proposed can be split into 6 different steps [Appendix

A.5].

Step 1: Speckle is considered to be multiplicative granular noise.

In order to turn multiplicative into additive noise, the authors pro-

pose to consider the log transformation of the image:

𝑓 (𝑥,𝑦) =𝑓 ′ (𝑥,𝑦) .𝜂 (𝑥,𝑦)
⇒ 𝑙𝑜𝑔(𝑓 (𝑥,𝑦)) =𝑙𝑜𝑔(𝑓 ′ (𝑥,𝑦)) + 𝑙𝑜𝑔(𝜂 (𝑥,𝑦)) = 𝐿(𝑓 (𝑥,𝑦))

Multi-scale implementations involve two consecutive steps.

Step 2: The first step involves wavelet decomposition, en-
abling multi-resolution analysis by breaking down the ultrasonic

image into a set of sub-images. These images capture information

at different resolutions using a low-pass filter (approximate com-

ponents: A) and high-pass filters (detailed components: H, V, D).

The authors propose more precisely a 2-level decomposition on

different types of mother wavelets [Figure 1]:

Figure 1: Two level decomposition function [4]

• First level: [𝐴1, 𝐻1,𝑉1, 𝐷1] = DWT(𝐿(𝑓 (𝑥,𝑦)))
• Second level: [𝐴2, 𝐻2,𝑉2, 𝐷2] = DWT(𝐴1)
The second part of the multi-scale implementation involves thresh-

olding methods to address despeckling. The process involves modi-

fying wavelet coefficients with values below a given threshold (Step

4) and subsequently computing the inverse wavelet transform to
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obtain the despeckled image (Step 5). Thresholding methods can

be categorized into two groups: hard and soft. Hard techniques

set to zero wavelet coefficients below the threshold, leaving other

coefficients unchanged [Appendix (4)]. In contrast, soft techniques

set wavelet coefficients below a given threshold to zero, and values

above the threshold are reduced towards zero [Appendix (3)]. It is

noteworthy that the soft technique is generally preferred over the

hard approach because reducing coefficients to zero helps mitigate

artifacts in the image.

Step 3: The choice of the threshold is critical for distinguish-

ing noise from significant information [5], and over the years, sev-

eral functions have been proposed [Appendix A.3]. However, the

authors introduced a global thresholding function based on diago-

nal sub-band at several decomposition levels to apply on detailed

components (𝐻𝑖 ,𝑉𝑖 , 𝐷𝑖 ∈ {1, 2}).

𝜏 = 2𝛽 [
| (𝜎2

𝑖
− 𝜎2

𝐷
) |

𝜎𝑖
] , 𝛽 =

√︁
2𝐿𝑜𝑔(𝐿) (1)

where L represents the total number of pixels from the image,

and 𝜎2
𝑖
, 𝜎2

𝐷
refer to the noise variances of the noisy image and the

detailed diagonal sub-band using [Appendix (5)].

Step 4: Regards the application of thresholding function to

wavelet coefficients of detailed components. The paper proposes

and adaptative thresholding function that scales down gradually

to zero wavelet coefficients with values below threshold without

altering other coefficients. This introduces a new class merging soft

and hard techniques:

𝑋𝑇 (𝑤) =
{
𝑤.𝑒𝑛𝑙 ( |𝑤 |−𝑡 )

if |𝑤 | < 𝜏
𝑤 if |𝑤 | ≥ 𝜏

(2)

The resulting denoised sub-bands are:

• For level-1: 𝐻𝑛1,𝑉𝑛1, 𝐷𝑛1

• For level-2: 𝐻𝑛2,𝑉𝑛2, 𝐷𝑛2

Step 5: To obtain a despeckled image, the inverse wavelet
transformation is computed. This captures the denoising modifi-

cations and returns the denoised version of the log of the image.

• At level-2: 𝐴𝑛1 = IDWT(𝐴2, 𝐻𝑛2,𝑉𝑛2, 𝐷𝑛2)
• At level-1: 𝐿𝑓 ′ = IDWT(𝐴𝑛1, 𝐻𝑛1,𝑉𝑛1, 𝐷𝑛1)

Step 6: Since the log transformation was applied to the initial

noisy image, a final step involves computing the exponential of
the log-transformed denoised image to bring it back to the orig-

inal domain. The final despeckled image is then obtained: 𝑓 ′ = 𝑒𝐿𝑓
′
.

3 RESULTS
To assess the effectiveness of thresholding functions and the algo-

rithm’s adaptability to real-case scenarios, the authors undertook a

comprehensive evaluation of the method’s performance on both

synthetic data and a real-case dataset in Matlab 17.

First, the authors analyzed 37 wavelet filters, including 15 bi-

orthogonal, 9 Daubechies, 8 Symlets, and 5 Coeflets, with the aim

of finding the most effective mother wavelet. The analysis revealed

that Daubechies (db1) as the top performing choice, followed by

Symlets, Coeflets, and Bi-orthogonal mother wavelets. For the

thresholding function referenced as (2), they selected coefficients

𝑛𝑙 with 𝑛1=1 and 𝑛2=0.5 based on prior research [6]. They deployed

four different metrics to evaluate and quantify each denoising algo-

rithm’s performance.

3.1 Synthetic data
The incorporation of synthetic data aimed to establish a ground

truth for evaluating the denoising efficacy of the proposed algo-

rithm. The authors deliberately introduced noise variance levels

(ranging from 0.01 to 0.04) into an initially noise-free image. A

comprehensive qualitative and quantitative comparison against

established filtering methods (e.g., average and median filtering,

SRAD) was conducted, incorporating both soft and hard threshold-

ing techniques.

The observations indicated that as the speckle increased, the

preservation of structural and textural elements in the despeckled

images diminished. Notably, the proposed method consistently out-

performed other techniques at every noise level [Appendix Figure

5]. Results demonstrated superior preservation of subtle features,

such as edges, boundaries, and texture, as evidenced by higher SSIM

scores, more pronounced features, and the lowest MSE. However,

with escalating noise variance, the PSNR values decreased, implying

that the despeckled images still retained some residual noise.

3.2 Real data
To assess the adaptability of the model to real-world scenarios, they

authors deployed a dataset of ultrasound images from Samsung

H60 Ultrasound Scanner. They observed a notable enhancement

in image quality using the proposed method that consistently out-

performed other methods across all considered metrics [Appendix

Figure 6.a]. Improves in SSIM scores indicated a greater similarity

and substantial preservation of structures in the despeckled images

compared to the original ones confirmed by EKI scores. Moreover,

higher PSNR values suggested effective noise reduction, leading to

fewer errors and a lower MSE associated with the proposed method.

3.3 Our results
I have created a dedicated GitHub repository containing the code

required to implement the proposed algorithm and replicate various

figures from the associated paper.

To validate the functionality of our implementation, initial tests

were conducted using a synthetically noised image of a cat. To gen-

erate the synthetic noisy image, I introduced Gaussian noise with a

mean (𝜇) of 0 and a standard deviation (𝜎) of 5 to a clean and noise-

free image featuring a cat. These tests involved the exploration of

four different mother wavelets—Daubechies1 (db1), Daubechies2

(db2), Symlets2 (sym2), and Biorthogonal (bior1.1). Furthermore, a

comprehensive comparison was undertaken on a combination of

various thresholding techniques outlined in [Appendix A.3], such

as VisuShrink, BayesShrink [7], the proposed technique (1), and

a set of thresholding functions [Appendix A.2]: Soft thresholding,

Hard thresholding, and the proposed technique (2). First, we may

remark that the best performing mother wavelet is as expected

db1. However, noteworthy deviations in performance order were
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observed, with bior1.1 achieving the second-best outcome. Sec-

ondly, I estimated each combination’s performance, and selected

the two best algorithms for each metric [Figure 2.a]. Subsequently,

we observe that independently from the mother wavelet, the pa-

per’s threshold coupled to soft and XT are consistently selected

featuring the better scores. Interestingly, the proposed threshold

coupled with XT exhibited lower scores for EKI, similar results for

SSIM and MSE. Indeed, PSNR stands out as the metric revealing

the most noticeable differences. It identifies the threshold function

with XT and soft thresholding, and Bayes with soft thresholding

as the top-performing techniques. In addition, we can visually ap-

preciate in [Figure 2.b] that the best results for hard thresholding

and XT is obtained using the paper’s thresholding function. For

hard thresholding, Bayes shrink and the paper’s threshold perform

similarly. For soft thresholding, Bayes seems to perform the best. A

gray effect is observed in VisuShrink technique that increases when

applying the thresholding function XT. Such an effect appears as

well on BayesShrink when implementing XT.

Subsequently, I assessed the adaptability of the algorithm using

a limited set of ultrasound images sourced from Kaggle [8]. The

dataset comprised 2 normal ultrasound images, along with 1 benign

and 1 malignant image. To establish a comprehensive evaluation,

we averaged the results for each metric and technique across all

images in the dataset. Initiating the tests, I conducted a comparative

analysis of the proposed algorithm against existing denoising tech-

niques, as illustrated in [Figure 3]. I employed a range of filters for

comparative analysis, incorporating Average, Median, Weiner, and

Wavelet thresholding, with the Bayes Shrinkage threshold coupled

to soft thresholding. Notably, the proposed technique consistently

outperformed in all metrics, aligning with our expectations [Ap-

pendix Figure 6.b]. Specifically, we achieved the lowest MSE value.

The algorithm demonstrated as well the highest values for SSIM

and PSNR indicating a higher preservation of features and better

reconstruction quality. Regarding EKI, the proposed technique con-

sistently demonstrated superior results, with Bayes shrinkage also

achieving the highest scores. I continued testing several mother

wavelets for the proposed algorithm. I found that db1 and bior1.1

remained the top-performing choices, consistent with the results

from synthetic trials. However, it is essential to note that vertical

and diagonal detailed components were null in several instances

due to a lack of variation. This limitation could directly affect the in-

terpretability of certain results. It appears that in the paper, detailed

components are represented as black squares in the schema. This

representation might suggest that certain detailed components are

also composed of null values. However, since the observation is not

explicitly mentioned or discussed in the paper, there remains some

uncertainty regarding the appropriateness of the results. As for the

synthetic image, I additionally tested combinations of thresholds

and thresholding functions to compare the performance of our im-

plementation [Appendix Figure 7.a]. We remark that the proposed

combination remains upon the best performing combinations but to

our surprise, combinations deploying VisuShrink and BayesShrink

yielded same performances. As mentioned before, wavelet decom-

position affect interpretability but may also limit considerably the

wavelet’s thresholding capacity to modify images as most coeffi-

cients yield already null values. This phenomena could explain the

a- Filter’s performance on a synthetic noisy image

b- Synthetic noisy image denoising with 9 different
filters

Figure 2: Results on synthetic data

observed similarity in results for various threshold combinations,

reducing the overall variability. However, despite this constraint,

the proposed technique consistently outperformed other methods.

This underscores its effectiveness, even under conditions that might

limit the full utilization of certain wavelet coefficients in the thresh-

olding process. In [Figure 3.b], it is evident that most filters yield

similar outputs, consistent with the metric results. A closer exami-

nation of [Figure 4] reveals that the filter does not induce drastic

changes to the image. Notably, there is an improvement in feature

definition in darker regions, enhanced contrast in certain areas, ho-

mogenization around similar tissue regions, and an intensification

of the gray effect in specific areas.

3



Optimization for Computer Vision, November 2023, Paris-Saclay University and al.

a- Filter’s performance on ultrasound images

b- Wavelet’s performance on ultrasound images

Figure 3: Results on ultrasound images

Figure 4: Comparison of noisy ultrasound and despeckled
image

4 CONCLUSION
The paper introduces a novel multi-scale approach that employs a

thresholding function combining soft and hard thresholding to ad-

dress speckle noise in ultrasound images. The utilization of wavelet

transform allows for the dissection of a discrete-time signal into

various scale components and orientations, revealing both coarse

and fine details. The modification of these detailed components,

assuming that noise primarily resides in lower frequencies, serves

as an effective pre-processing step to enhance image quality in

computer vision. This approach outperforms single-scale methods

by considering an increasing amount of information during im-

age modification. Specifically, gradually scaling coefficients under

a given threshold to zero effectively removes speckle while pre-

serving more information. Neverthess, the despeckling techniques

show limitations when applied to detailed components with null

values. Implementations in such cases are hindered due to lack

of possible modifications underscoring a scenario where the pro-

posed approach may not achieve optimal results. Experimentations

demonstrated on both synthetic and real datasets, showcase en-

hanced clarity with preserved edges and boundaries. The filtered

images exhibit reduced speckle, improved edge preservation, and

a heightened level of detail compared to the original images. Per-

formance measures affirm the superior preservation of structures.

Despite the successful outcomes, the implementation process en-

countered challenges. A notable contradiction emerged between

the global threshold presented in the paper’s methodology and the

suggestion, in the step-by-step presentation, to compute the thresh-

old individually for each detailed component (𝐻𝑖 ,𝑉𝑖 , 𝐷𝑖 ,∀𝑖 ∈ {1, 2}).
Additionally, the paper did not specify how to compute 𝜎𝑖 corre-

sponding to the noise variance of the noisy image. To address these

issues, I delved into the literature, explored potential meanings,

and selected the most effective approach based on a set of images.

Another challenge involved computation time. In fact, some images

took longer than expected to be despeckled, leading to a significant

reduction in the dataset size. In conclusion, the findings presented

in this article underscore and provide valuable insights that con-

tribute to ultrasound image despeckle, paving theway for continued

advancements in medical imaging.
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A APPENDIX

A.1 Quick-links
• Ultrasound speckle reduction using adaptive wavelet

thresholding [4]

• GitHub repository

A.2 Thresholding functions
A.2.1 Soft thresholding.

𝑤 =

{
0 if |𝑤 | < 𝑡
𝑠𝑖𝑔𝑛(𝑤) ( |𝑤 | − 𝑡) if |𝑤 | ≥ 𝑡

(3)

A.2.2 Hard thresholding.

𝑤 =

{
0 if |𝑤 | < 𝑡
𝑤 if |𝑤 | ≥ 𝑡

(4)

A.2.3 Exponential thresholding.

𝑋𝑇 (𝑤) =
{
𝑤.𝑒

𝑛𝑙 ( |𝑤 |−𝑇𝑘𝑙 ) if |𝑤 | < 𝑇𝑘𝑙
𝑤 if |𝑤 | ≥ 𝑇𝑘𝑙

A.3 Threshold definitions

A.3.1 VisuShrink. [9] [10]
Minimizes the maximum possible error over a fixed number of

pixels in an image. This method offers a global threshold that is

defined as follows:

𝑇𝑢𝑛𝑖𝑣 = 𝜎𝑖𝑚
√︁
2𝑙𝑜𝑔(𝐿)

Where L represents the size of the image (width×height), and 𝜎𝑖𝑚
the standard deviation of the noisy image.

A.3.2 BayesShrink. [5]
This method is based on the assumption that: for every sub-band,

wavelet coefficients can be described by a Generalized Gaussian

Distribution. The threshold value minimizes the Bayesian risk:

𝑇𝐵𝑎𝑦𝑒𝑠 (𝜎𝑥 ) =
𝜎2
𝑙

𝜎𝑥

Where 𝜎𝑥 defines the standard deviation of the respective sub-band

and

𝜎𝑙 = [𝑚𝑒𝑑𝑖𝑎𝑛( |𝐷𝑙 |)
0.6745

]2 (5)

A.4 Metrics Formulas
In order to address denoising evaluation, four different metrics are

used to assess the algorithm’s performance [7] [11]. In the first

three metrics, we will call the initial noisy image f and the denoised

image g.

A.4.1 Structural Similarity Index (SSIM). Analyzes the preserva-
tion of structures in the filtered image while depicting the similarity

persistance. This function takes as input the original image acquired

and filtered image, and is based on luminance, contrast and struc-

tural terms parameters.

𝑙 (𝑓 , 𝑔) =
2𝜇𝑓 𝜇𝑔 + 𝑐1
𝜇2
𝑓
+ 𝜇2𝑔 + 𝑐1

𝑐 (𝑓 , 𝑔) =
2𝜎𝑓 𝜎𝑔 + 𝑐2
𝜎2
𝑓
+ 𝜎2𝑔 + 𝑐2

𝑠 (𝑓 , 𝑔) =
𝜎𝑓 𝑔 + 𝑐3
𝜎𝑓 𝜎𝑔 + 𝑐3

𝑐1 = (0.01 × 𝐿)2, 𝑐2 = (0.03 × 𝐿)2 and 𝑐3 = 𝑐2/𝐿

A.4.2 Edge Keeping Index (EKI). Studies the amount of edges pre-

served in the filtered image when compared to the original noisy

image. High EKI values indicate an efficient preservation of edges.

𝐸𝐾𝐼 =
𝐷 (Δ𝑓 − Δ𝑓 ,Δ𝑔 − Δ𝑔)√︃
𝐷 (Δ𝑓 − Δ𝑓 ,Δ𝑔 − Δ𝑔)

Where 𝐷 (𝑓 , 𝑔) = ∑𝑚
𝑥=1

∑𝑛
𝑦=1 𝑓 (𝑥,𝑦)𝑔(𝑥,𝑦)

A.4.3 Mean Squared Error (MSE). Measures the amount of varia-

tion between the despeckled image and the reference image. The

lower the MSE value, the lower the error.

𝑀𝑆𝐸 =
1

𝑚𝑛

𝑚∑︁
𝑥=1

𝑛∑︁
𝑦=1

[𝑓 (𝑥,𝑦) − 𝑔(𝑥,𝑦)]2

A.4.4 Peak Signal-to-Noise Ratio (PSNR). Quantifies the amount

of noise suppressed in the filtered image. The higher the value the

better the quality of the output image.

𝑃𝑆𝑁𝑅(𝑑𝐵) = 10𝑙𝑜𝑔10 (
𝑝𝑒𝑎𝑘𝑣𝑎𝑙2

𝑀𝑆𝐸
)

Where, peakval can be selected by the researcher or chosen from a

range of values defined by the image datatype.
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A.5 Step-by-step algorithm

Algorithm 1 Image despeckle

Step 1: Log transformation of the image

Step 2:Wavelet decomposition

Step 3: Choice of threshold
Step 4: Thresholding function implementation

Step 5: Inverse wavelet transformation

Step 6: Exponential transformation of the denoised image

A.6 Figures

Figure 5: Comparison of average performance measures for
test images [4]

a-Paper results [4]

paper bayes filter weiner filter average filter median filter

EKI 0.998462 0.998085 0.806110 0.455949 -0.256040

SSIM 0.992341 0.953422 0.964555 0.879736 0.970562

PSNR 34.107628 32.176712 27.271601 32.207617 29.322205

MSE 0.000498 0.000702 0.001906 0.000613 0.001243

b- Our results

Figure 6: Comparison of the performance of the filtering
methods

a- Wavelet’s performance on ultrasound images

b- Implementation of different filters on ultrasound
images

Figure 7: Results on ultrasound images

6


	1 Introduction
	2 Methods
	3 Results
	3.1 Synthetic data
	3.2 Real data
	3.3 Our results

	4 Conclusion
	A Appendix
	A.1 Quick-links
	A.2 Thresholding functions
	A.3 Threshold definitions
	A.4 Metrics Formulas
	A.5 Step-by-step algorithm
	A.6 Figures


