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ABSTRACT
In the context of information extraction, clustering proves to be

an effective method for regrouping similar individuals. However,

given the high-dimensionality of current data, there is a need for an

approach to also reduce the variables, giving rise to co-clustering.

This method has been widely applied in real-life cases, such as

collaborative filtering, which relies on considering other users’

ratings of items to suggest similar items to individuals. Nevertheless,

it is observed that not all users will rate all products, leading to

missing cases.

Moreover, it has been shown that missingness is induced by the

nature of the data; users tend to rate items they either like a lot or

find dissatisfying. However, there is a scarcity of literature address-

ing informative missing values. To tackle this gap, Frisch et al., 2022

proposed an informative missingness model that can be integrated

with the standard latent block model for co-clustering, particularly

in the case of binary data. They also suggested estimating the latent

variables through the variational expectation-maximization and

introduced a model selection criterion. Finally, the proposed model

was tested in a real-world scenario.

Keywords: Co-clustering, latent block model (LBM), variational

expectation-maximization (VEM), missing values, missing not at

random (MNAR), integrated completed likelihood (ICL).

Notations: Let us introduce some notations. First, we denote the

interval {1, ..., ℎ} as [ℎ]. Throughout the paper, index 𝑖 will refer
to the individuals, 𝑗 to the variables, 𝑘 to the row clusters and 𝑙

to the column clusters. Their respective ranges are [𝑛1], [𝑛2], [𝐾]
and [𝐿]. Then, the binary data matrix 𝑋 will be of size 𝑛1 ×𝑛2. The
partially observed data matrix will be denoted by 𝑋 obs

, taking in

each case values in {0, 1,NA}.𝑀 denotes the binary mask, where

if𝑀𝑖 𝑗 = 0 then the 𝑖, 𝑗-th entry is missing 𝑋 obs

𝑖 𝑗
= NA.

1 INTRODUCTION
The primary objective of statistics is to summarize information to

enhance understanding and facilitate better decision-making. Clus-

tering is among the most widely used methods for achieving this,

as it combines data reduction and information extraction. However,

the choice of the correct representation is crucial, such as deter-

mining the appropriate number of clusters. To address this issue

and take advantage from the benefits of statistics, model-based

clustering (MBC) is considered a reference point. This approach

captures the flexibility of mixture models, where each cluster is

represented as a probability distribution.

Given the current prevalence of high-dimensional data sets, an

extension of the clustering concept for covariates has been sug-

gested. This extension is known as the co-clustering paradigm,

providing a method for simultaneously clustering both rows and

columns in the datamatrix. This enables us to preserve interpretabil-

ity in the reduced data, as both the meaning of individuals and

covariates is retained. We may notice that the co-clustering model

differs from bi-clustering as it does not allow overlaps between the

clusters.

Similar to the model-based clustering approach, a model-based

method is proposed for the co-clustering problem known as the

latent block model (LBM) (refer to Biernacki et al., 2023), which

provides a strong statistical foundation for estimation and model

selection.

We observe that almost all clustering and co-clustering methods

are not adapted to accommodate missing values. Nevertheless, in

the era of big data, finding data sets with no missing values remains

idealistic. To incorporate missing values into our model, it is neces-

sary to examine the data-generating process to identify the type of

missingness, as described in RUBIN, 1976.

Missingness can be independent of the data, as seen in cases of

random sensor failures or forgetting to fill in a form, leading to

missing completely at random (MCAR). In another scenario, miss-

ingness depends on the values observed in the data, as in a medical

study where not all patients undergo all medical tests if the ob-

served values are typical. This scenario is referred to as missing at

random (MAR). Finally, there can be a situation where missingness

is determined by the underlying values, such as reviewers express-

ing their opinion only when products are extremely good or bad in

the case of collaborative filtering. This missingness mechanism is

called missing not at random (MNAR), and not accounting for it

can introduce bias in the estimation of underlying parameters.

MNAR gap in the models: In the context of Matrix Factorization,

Hernandez-Lobato et al., 2014 proposed a probabilistic model that

demonstrated the advantages of theMNAR setting over the previous

MAR setting in collaborative filtering.

Regarding clustering, few methods have been proposed to ac-

commodate the MNAR assumption. In Marlin et al., 2011, based

on responses from a survey on an online radio service, a MNAR

mechanism was proposed, significantly improving previous results

obtained under the MAR assumption. The CPT-𝑣 captures the de-

pendency of an item’s probability of being rated on the user’s rating

for it with a value 𝑣 . In Marlin et al., 2012, they propose the Logit-𝑣𝑑 ,

a generalization of CPT-𝑣 that allows the missingness probability

to vary among items. It includes two factors: one depending on the

rating value 𝑣 and another on each item 𝑑 . Following a symmetric

idea for co-clustering, Frisch et al., 2022 also includes the row.

Adaptations of co-clustering for missing data have been intro-

duced progressively over the years, with a focus mainly on MCAR

and MAR missing models. For example, Selosse et al., 2020 presents

the multiple latent block model, which not only allows for differ-

ent types of data but also accommodates missing values under the
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MAR assumption. Only Corneli et al., 2020 deals with the MNAR

assumption. They propose a latent Gaussian random variable to

generate ordinal data using a threshold. Their missingness mech-

anism depends on the row and column cluster, indirectly on the

missing value.

In contrast to the MNAR presented in Corneli et al., 2020, Frisch

et al., 2022 proposes a model that explicitly depends on the column,

row and the underlying value. The referred model will be presented

in section 2.2.

Contributions: Frisch et al., 2022 presents an extension of the La-

tent Block Model (LBM) to address missing data on binary data ma-

trices. The main contributions of this publication could be grouped

in two parts. First, they propose a flexible extension of the LBM

algorithm adapted to MNAR missing process. To deal with tractabil-

ity issues concerning the complete likelihood, they implement a

Variational Expectation Maximization algorithm (VEM) coupled to

Taylor expansion to compute the lower bound of the observed like-

lihood. Secondly, they introduce an adapted version of the model

selection criterion, ICL, to select adequate missing model and num-

ber of classes.

In the interest of comprehension, we have decomposed the code

from Frisch et al., 2022 into multiple Jupyter notebooks. This allows

for an easy understanding of each function and the general method-

ology. For further information about the notebook structure, we

refer to appendix B. The code is publicly available at:

https://github.com/AngelReyero/LBM-MNAR.

In section 2, we describe the model designed to accommodate

informative missing values as an extension of the standard LBM.

In section 3, we provide details on how to estimate the model

and introduce a model selection criterion. Finally, in section 4,

we present experimental results showcasing the accuracy of the

estimation model on synthetic data and demonstrate the flexibility

of the model assumptions through a real-world data case.

2 MODEL
In this section, we outline the assumptions made about the under-

lying data. We begin by recalling the known latent block model in

section 2.1, followed by an explanation of the assumptions regard-

ing the missingness mechanism in section 2.2. Finally, we integrate

and summarize the previous in section 2.3.

2.1 Latent block model (LBM)
The latent block model is a model-based approach to find 𝐾 row

and 𝐿 column clusters in the 𝑛1 × 𝑛2 data matrix 𝑋 , so that after

reordering, we obtain 𝐾 × 𝐿 homogeneous blocks. In this article,

we recall that the data matrix is binary.

We use two latent matrices to determine the row and column

clusters. The indicator matrix 𝑌 , of size 𝑛1×𝐾 , is the latent variable
where 𝑌𝑖𝑘 is 1 if the 𝑖-th row belongs to the 𝑘-th cluster. Similarly,

for columns, we use the latent variable𝑍 of size𝑛2×𝐿. We denote𝑌𝑖
the row indicator for the 𝑖-th individual and𝑍 𝑗 the column indicator

for the 𝑗-th covariate.

We make the following independence assumptions in this model:

Assumption 1 (Independent rows and columns clusters). The

latent variables 𝑌 and 𝑍 are independent:

𝑌 ⊥⊥ 𝑍 .

We observe that this does not imply the independence condi-

tioned on the data matrix 𝑋 .

Assumption 2 (I.I.D. row clusters). Each row cluster 𝑌𝑖 is inde-

pendent from the rest and it follows a multinomial distribution of

parameter 𝛼 := (𝛼1, . . . , 𝛼𝐾 ), where each 𝛼𝑘 > 0 and

∑
𝛼𝑘 = 1, so

that P(𝑌𝑖𝑘 = 1) = 𝛼𝑘 .

∀𝑖1, 𝑖2 ∈ {1, . . . , 𝑛1} 𝑌𝑖1 ⊥⊥ 𝑌𝑖2 & 𝑌𝑖1 ∼ M(1;𝛼).

Simmilarly but on the columns:

Assumption 3 (I.I.D. column clusters). Each column cluster 𝑍 𝑗 is

independent from the rest and it follows a multinomial distribution

of parameter 𝛽 := (𝛽1, . . . , 𝛽𝐿), where each 𝛽𝑙 > 0 and

∑
𝛽𝑙 = 1 so

that P(𝑍 𝑗𝑙 = 1) = 𝛽𝑙 .
∀𝑗1, 𝑗2 ∈ {1, . . . , 𝑛2} 𝑍 𝑗1 ⊥⊥ 𝑍 𝑗2 & 𝑍 𝑗2 ∼ M(1; 𝛽).

Assumption 4 (I.I.D. block entries given column and row clusters).
Given the row and the column cluster, each entry is independent and

distributed as a Bernoulli of parameter 𝜋 = (𝜋𝑘𝑙 ;𝑘 ∈ [𝐾], 𝑙 ∈ [𝐿]).
∀𝑖1, 𝑖2 ∈ [𝑛1], 𝑗1, 𝑗2 ∈ [𝑛2], 𝑋𝑖1 𝑗1 |𝑌𝑖1 , 𝑍 𝑗1 ⊥⊥ 𝑋𝑖2 𝑗2 |𝑌𝑖2 , 𝑍 𝑗2

P
(
𝑋𝑖 𝑗 = 1

��𝑌𝑖𝑘𝑍 𝑗𝑙 = 1;𝜋

)
= 𝜋𝑘𝑙 .

Then, we observe that the parameters of the model are 𝜃 :=

(𝛼, 𝛽, 𝜋), and that using the previous assumptions we can rewrite

the distribution of 𝑋 as

𝑓 (𝑋 ;𝜃 ) =
∑︁

(𝑌,𝑍 ) ∈𝐼× 𝐽
𝑓 (𝑋 |𝑌, 𝑍 ;𝜃 ) 𝑓 (𝑌, 𝑍 ;𝜃 )

=
∑︁

(𝑌,𝑍 ) ∈𝐼× 𝐽
𝑓 (𝑋 |𝑌, 𝑍 ;𝜃 ) 𝑓 (𝑌 ;𝜃 ) 𝑓 (𝑍 ;𝜃 )

=
∑︁

(𝑌,𝑍 ) ∈𝐼× 𝐽

∏
𝑖 𝑗𝑘𝑙

𝑓
(
𝑋𝑖 𝑗

��𝑌𝑖𝑘𝑍𝑘𝑙 = 1;𝜋
)𝑌𝑖𝑘𝑍 𝑗𝑙

∏
𝑖𝑘

𝛼
𝑌𝑖𝑘
𝑘

∏
𝑗𝑙

𝛽
𝑍 𝑗 𝑙

𝑙

=
∑︁

(𝑌,𝑍 ) ∈𝐼× 𝐽

∏
𝑖 𝑗𝑘𝑙

(
𝜋
𝑋𝑖 𝑗

𝑘𝑙
(1 − 𝜋𝑘𝑙 )1−𝑋𝑖 𝑗

)𝑌𝑖𝑘𝑍 𝑗𝑙
∏
𝑖𝑘

𝛼
𝑌𝑖𝑘
𝑘

∏
𝑗𝑙

𝛽
𝑍 𝑗 𝑙

𝑙
,

where 𝐼 and 𝐽 denote all the possible partitions of rows and

columns into 𝐾 and 𝐿 groups respectively. It is summarized in the

[Figure 1].

2.2 Missingness mechanism
In many co-clustering applications, such as collaborative filtering,

which involves users providing ratings for a set of items and is

frequently used in recommendation systems, it is common for users

not to rate all the products. Consequently, dealing with missing

values becomes a necessity. However, there is a scarcity of methods

adapted to this type of data. Moreover, the scarcity is even more

pronounced under the assumption of non-ignorable missing data,

as is the case, for example, in collaborative filtering (refer to Marlin

et al., 2012). In this section, we will present a missingness model

that will be incorporated into the LBM, as discussed in section 2.3.
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𝑌𝑖

𝑋𝑖 𝑗

𝑍 𝑗

Row Column

∀𝑖, 𝑌𝑖 ∼ M(1;𝛼)
∀𝑗, 𝑍 𝑗 ∼ M(1; 𝛽)

∀𝑖, 𝑗, 𝑋𝑖 𝑗 |𝑌𝑖𝑘 = 1, 𝑍 𝑗𝑙 = 1 ∼ B(𝜋𝑘𝑙 )

Figure 1: Assumptions of the latent block model (LBM).

𝑋𝑖 𝑗 𝑀𝑖 𝑗

𝑋 obs

𝑖 𝑗

𝐴𝑖 𝐵𝑖 𝐶 𝑗

𝐷 𝑗

𝜇

MAR MNARMCAR

Figure 2: Latent variables of the missingness model.

We recall that 𝑋 obs
denote the partially observed data matrix

and 𝑀 denotes the mask. If 𝑀𝑖 𝑗 = 0 then the 𝑖 𝑗-th entry is not

observed 𝑋𝑖 𝑗 = NA.

In this section, we introduce a nested missingness model used in

Frisch et al., 2022. This hierarchical model transitions from a com-

pletely missingness mechanism to a more nuanced non-ignorable

one.

First, in the context of Missing Completely At Random (MCAR),

a fixed parameter 𝜇 represents the missingness propensity for all

cases. Then, to account for factors such as varying user response

rates or the tendency to rate more expensive products, we extend

the model to Missing At Random (MAR) by introducing latent vari-

ables 𝐴 and 𝐶 for rows and columns, respectively. Furthermore, to

capture the idea that the probability of rating an article depends

on various factors, including the current opinion of the article, we

introduce two additional latent variables, 𝐵 and 𝐷 , for rows and

columns. These variables are employed differently in the model

based on the underlying value of 𝑋𝑖 𝑗 , giving an Missing Not At
Random (MNAR) model. Importantly, the flexibility provided by

these variables has been demonstrated in both synthetic and real

data experiments (refer to Frisch et al., 2022). This relations are

graphically summarized in [Figure 2].

For simplicity, we assume the independence and Gaussianity of

the missingness latent variables:

Assumption 5 (I.I.D. missingness latent variables). All the 𝐴, 𝐵,𝐶

and 𝐷 are independent and distributed as{
∀𝑖, 𝐴𝑖 ∼ N(0, 𝜎2

𝐴
) & 𝐵𝑖 ∼ N(0, 𝜎2

𝐵
)

∀𝑗, 𝐶 𝑗 ∼ N(0, 𝜎2
𝐶
) & 𝐷 𝑗 ∼ N(0, 𝜎2

𝐷
) .

Finally, we assume that the missingness of each case is inde-

pendent of the rest and follows a Bernoulli distribution based on

combinations of the preceding latent variables as follows:

Assumption 6 (Missingness distribution). We have

∀𝑖, 𝑗, 𝑀𝑖 𝑗 |𝐴𝑖 , 𝐵𝑖 ,𝐶 𝑗 , 𝐷 𝑗 , 𝑋𝑖 𝑗 ∼ B
(
expit(𝑃𝑖 𝑗 )

)
,

independent from the other and where

𝑃𝑖 𝑗 :=

{
𝜇 +𝐴𝑖 + 𝐵𝑖 +𝐶 𝑗 + 𝐷 𝑗 if 𝑋𝑖 𝑗 = 1

𝜇 +𝐴𝑖 − 𝐵𝑖 +𝐶 𝑗 − 𝐷 𝑗 if 𝑋𝑖 𝑗 = 0,

and expit(𝑥) = 1

1+exp(−𝑥 ) .

With this model, we can consider not only the probability of

an item being rated or users’ propensity to express their opinion

but also their underlying opinion on the product, influencing their

decision to rate or not.

2.3 Combining the LBM with the missingness
mechanism

We recall that 𝑋 obs

𝑖 𝑗
is either NA whenever 𝑀𝑖 𝑗 = 0 and 𝑋𝑖 𝑗 oth-

erwise. Then, in each case, the observed value can be either 0, 1

or NA. Moreover, we note that it is possible to express the entire

model using the preceding latent variables (𝑌, 𝑍,𝐴, 𝐵,𝐶 and 𝐷),

eliminating the necessity of the mask matrix, through a categorical

distribution:

𝑋 obs

𝑖 𝑗 |𝑌𝑖𝑘 = 1, 𝑍 𝑗𝑙 = 1, 𝐴𝑖 , 𝐵𝑖 ,𝐶 𝑗 , 𝐷 𝑗 ∼ cat
©­«

0

1

NA

 ,


𝑝0
𝑝1

1 − 𝑝0 − 𝑝1

ª®¬ ,
(1)

where

𝑝0 = (1 − 𝜋𝑘𝑙 )expit(𝜇 +𝐴𝑖 − 𝐵𝑖 +𝐶 𝑗 − 𝐷 𝑗 ) (2)

and

𝑝1 = 𝜋𝑘𝑙expit(𝜇 +𝐴𝑖 + 𝐵𝑖 +𝐶 𝑗 + 𝐷 𝑗 ) . (3)

In both terms, we note that the initial component arises from the

probability assigned by the LBM to be either 0 or 1, while the second

term accounts for the probability of missingness. Summarizing the

parameters of our model, we have that the latent variables depend

on 𝜃 = (𝛼, 𝛽, 𝜋, 𝜇, 𝜎2
𝐴
, 𝜎2
𝐵
, 𝜎2
𝐶
, 𝜎2
𝐷
), having a total of 𝐾 +𝐿 +𝐾 ×𝐿 + 5.

3 MODEL ESTIMATION
As usual, to estimate the parameters of the model, our objective

is to maximize the observed log-likelihood. To achieve this, we

recognize that by marginalizing the latent variables, we obtain

𝑝

(
𝑋 obs

;𝜃

)
=
∑︁
𝑌,𝑍

∫
𝐴𝐵𝐶𝐷

𝑝

(
𝑋 obs, 𝑌 , 𝑍,𝐴, 𝐵,𝐶, 𝐷 ;𝜃

)
.

Unfortunately, this problem is intractable. As an alternative, wemay

use the EM algorithm to avoid the need for explicit computation.

This algorithm iterates the following steps:
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𝑋𝑖 𝑗 𝑀𝑖 𝑗

𝑋 obs

𝑖 𝑗

𝐴𝑖 𝐵𝑖 𝐶 𝑗

𝐷 𝑗

𝜇

𝑌𝑖𝑍 𝑗

MAR MNARMCARLBM

Figure 3: LBM adapted to the MNAR mechanism.

Expectation: It consists on computing

𝑄
(
𝜃
��𝜃𝑡 ) = E [log𝑝 (

𝑋 obs, 𝑌 , 𝑍,𝐴, 𝐵,𝐶, 𝐷 ;𝜃

)
|𝑋 obs, 𝜃𝑡

]
.

Maximization: We seek to find the parameters that maximize

the previous expectation:

𝜃𝑡+1 = argmax

(
𝑄 (𝜃 |𝜃𝑡 )

)
.

However, the expectation step is computationally infeasible due

to its complexity. Alternatives, such as Stochastic Expectation Max-

imization (SEM) (refer to Brault et al., 2014), which involves Monte

Carlo sampling, are not suitable for our context due to scalability

issues. In this article, we adopt a variational approach.

3.1 Variational expectation maximization
(VEM)

We start by introducing 𝑞(·), which is the variational distribution

over the latent variables 𝐴, 𝐵,𝐶, 𝐷,𝑌 and 𝑍 . Then, we remark that

after adding and substracting the entropy of the variation distribu-

tion to the observed log-likelihood we have

log𝑝

(
𝑋 obs

;𝜃

)
= J (𝑞, 𝜃 ) + KL

(
𝑞(·)




𝑝 (·|𝑋 obs
;𝜃 )

)
, (4)

where KL accounts for the Kullback-Leibler divergence andJ refers

to the free energy, which is given by

J (𝑞, 𝜃 ) = H(𝑞) + E
[
log𝑝

(
𝑋 obs, 𝑌 , 𝑍,𝐴, 𝐵,𝐶, 𝐷

)]
,

whereH refers to the entropy.

From (4), we observe that in order to maximize the J criterion,

we need to minimise the discrepancy between 𝑞(·) is 𝑝 (·|𝑋 obs
;𝜃 )

given by the Kullback-Leibler divergence:

KL

(
𝑞(·)




𝑝 (·|𝑋 obs
;𝜃 )

)
.

Then, we would like the variational distribution as 𝑝 (·|𝑋 obs
;𝜃 )

almost everywhere. From this, given that the evidence is given by

log𝑝

(
𝑋 obs

;𝜃

)
,

we also call J (𝑞, 𝜃 ) the Evidence Lower BOund (ELBO).

Unfortunately, optimizing this problem over the set of all distri-

butions is not feasible. Therefore, we need to constrain the selection

of the posterior distribution of the latent variables to an specific

subset:

∀𝑖 𝑌𝑖 |𝑋 obs ∼ M(1;𝜏 (𝑌 )
𝑖

)

∀𝑗 𝑍 𝑗 |𝑋 obs ∼ M(1;𝜏 (𝑍 )
𝑗

)

∀𝑖 𝐴𝑖 |𝑋 obs ∼ N(𝜈 (𝐴)
𝑖

, 𝜌
(𝐴)
𝑖

)

∀𝑖 𝐵𝑖 |𝑋 obs ∼ N(𝜈 (𝐵)
𝑖

, 𝜌
(𝐵)
𝑖

)

∀𝑗 𝐶 𝑗 |𝑋 obs ∼ N(𝜈 (𝐶 )
𝑗

, 𝜌
(𝐶 )
𝑗

)

∀𝑗 𝐷 𝑗 |𝑋 obs ∼ N(𝜈 (𝐷 )
𝑗

, 𝜌
(𝐷 )
𝑗

) .

Moreover, using the mean field approximation, we assume indepen-

dence among these distributions for feasibility. This allows us to

obtain the following factorized version of the variational distribu-

tion:

𝑞𝛾 =

𝑛1∏
𝑖=1

M
(
1;𝜏

(𝑌 )
𝑖

)
×

𝑛2∏
𝑗=1

M
(
1;𝜏

(𝑍 )
𝑗

)
×

𝑛1∏
𝑖=1

N
(
𝜈
(𝐴)
𝑖

, 𝜌
(𝐴)
𝑖

)
×

𝑛1∏
𝑖=1

N
(
𝜈
(𝐵)
𝑖

, 𝜌
(𝐵)
𝑖

)
×

𝑛2∏
𝑗=1

N
(
𝜈
(𝐶 )
𝑗

, 𝜌
(𝐶 )
𝑗

)
×

𝑛2∏
𝑗=1

N
(
𝜈
(𝐷 )
𝑗

, 𝜌
(𝐷 )
𝑗

)
, (5)

where we denote 𝑞𝛾 the restriction of the variational distribution

to the previous assumptions and its parameters

𝛾 =

(
𝜏 (𝑌 ) , 𝜏 (𝑍 ) , 𝜈 (𝐴) , 𝜌 (𝐴) , 𝜈 (𝐵) , 𝜌 (𝐵) , 𝜈 (𝐶 ) , 𝜌 (𝐶 ) , 𝜈 (𝐷 ) , 𝜌 (𝐷 )

)
.

Finally, we use the previous to construct a two-step iterative

algorithm. It begins by estimating the parameters 𝛾 through the

optimization of the free energy, constrained to the already explained

posterior distributions given by:

J (𝑞𝛾 , 𝜃 ) = H(𝑞𝛾 ) + E𝑞𝛾
[
log𝑝

(
𝑋 obs, 𝑌 , 𝑍,𝐴, 𝐵,𝐶, 𝐷

)]
. (6)

Once computed, we take the maximization step for the parameters

of the model:

𝜃 ∈ argmax

𝜃

(
max

𝛾
J (𝑞𝛾 , 𝜃 )

)
.

This two-step iterative algorithm is shown in algorithm 1.

3.2 Computation of the variational criterion
We note from algorithm 1 that we need to compute the variational

criterion J . To do so, we are going to develop both terms shown

in (6).

Entropy term: To solve this first term, we leverage the indepen-

dence of the posterior variational distributions, yielding the factor-

ized form as given in (5). Exploiting this factorization, we can then

apply the additivity of entropy terms for independent variables.
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Algorithm 1: VEM for LBM with MNAR

Data: The incomplete data 𝑋 obs
and the number of rows

and columns clusters 𝐾 and 𝐿.

Result: The model 𝜃 and variational 𝛾 parameters.

1 Initialize the parameters.

2 while not stopping criterion satisfied do
3 VE-step: we update the variational parameters:

𝛾𝑡+1 ∈ argmax

𝛾
J (𝑞𝛾 , 𝜃𝑡 ).

M-step: we update the model parameters:

𝜃𝑡+1 ∈ argmax

𝜃

J (𝑞𝛾𝑡+1 , 𝜃 ).

Additionally, we utilize the entropy results derived from proposi-

tion A.1 and proposition A.2. Then, we have

H(𝑞𝛾 ) = −
∑︁
𝑖𝑘

𝜏
(𝑌 )
𝑖𝑘

log𝜏
(𝑌 )
𝑖𝑘

−
∑︁
𝑗𝑙

𝜏
(𝑍 )
𝑗𝑙

log𝜏
(𝑍 )
𝑗𝑙

+ 1

2

∑︁
𝑖

log

(
2𝜋𝑒𝜌

(𝐴)
𝑖

)
+ 1

2

∑︁
𝑖

log

(
2𝜋𝑒𝜌

(𝐵)
𝑖

)
+ 1

2

∑︁
𝑗

log

(
2𝜋𝑒𝜌

(𝐶 )
𝑗

)
+ 1

2

∑︁
𝑗

log

(
2𝜋𝑒𝜌

(𝐷 )
𝑗

)
.

Expectation over the variation distribution of the complete likeli-
hood term: For the second term, we begin by applying the indepen-

dence assumption on the latent variables within the missingness

mechanism, as specified in assumption 5. Therefore we have

E𝑞𝛾

[
log𝑝

(
𝑋 obs, 𝑌 , 𝑍,𝐴, 𝐵,𝐶, 𝐷

)]
= E𝑞𝛾 [log𝑝 (𝑌 )]

+ E𝑞𝛾 [log𝑝 (𝑍 )] + E𝑞𝛾 [log𝑝 (𝐴)] + E𝑞𝛾 [log𝑝 (𝐵)]
+ E𝑞𝛾 [log𝑝 (𝐶)] + E𝑞𝛾 [log𝑝 (𝐷)]

+ E𝑞𝛾
[
log𝑝

(
𝑋 obs

���𝑌, 𝑍,𝐴, 𝐵,𝐶, 𝐷)] . (7)

To compute this term, we refer to the direct computation of all

the terms in appendix A.1, except for the last one. By primarily

using the expression provided in (1) to avoid the need for the mask

matrix, we observe that the last term is given by:

E𝑞𝛾

[
log𝑝

(
𝑋 obs

���𝑌, 𝑍,𝐴, 𝐵,𝐶, 𝐷)]
=

∑︁
𝑘𝑙,𝑖 𝑗,𝑋 obs

𝑖 𝑗
=1

𝜏
(𝑌 )
𝑖𝑘

𝜏
(𝑍 )
𝑗𝑙
E𝑞𝛾 [log(𝑝1)]

+
∑︁

𝑘𝑙,𝑖 𝑗,𝑋 obs

𝑖 𝑗
=0

𝜏
(𝑌 )
𝑖𝑘

𝜏
(𝑍 )
𝑗𝑙
E𝑞𝛾 [log(𝑝0)]

+
∑︁

𝑘𝑙,𝑖 𝑗,𝑋 obs

𝑖 𝑗
=NA

𝜏
(𝑌 )
𝑖𝑘

𝜏
(𝑍 )
𝑗𝑙
E𝑞𝛾 [log(1 − 𝑝0 − 𝑝1)],

where the 𝑝0 ad 𝑝1 are defined in (2) and (3). This term is not

explicitly computable, then assuming a small variance term we

will use the second-order Taylor series with independent random

variables described in proposition A.3.

Maximization: As mentioned earlier, we confront two maximiza-

tion steps for the criterion J (𝑞𝛾 , 𝜃 ). The first involves optimizing

with respect to 𝛾 (VE-Step) , and the second entails optimization

with respect to 𝜃 (M-Step). Given the absence of a formal and ex-

plicit solution for these problems, an implementation of the L-BFGS

optimization algorithm is employed. To compute the gradients es-

sential for this optimization problems (approximated by the Taylor

developments using proposition A.3), the Autograd submodule from

PyTorch is deployed. Given the computational intensity of such

calculus, the use of this tool is indispensable, particularly for its

ability to leverage GPU capabilities.

Initialization: Addressing VEM algorithms presents a significant

challenge in achieving convergence to global maxima and overcom-

ing initialization dependence. In the paper, the authors tackle this

problem by implementing the parameters of the Stochastic Block

Model, linked to LBM for graphs. Such parameters are identified

by using double spectral clustering on rows and columns on the

similarity matrices 𝑋𝑋 𝑡 and 𝑋 𝑡𝑋 to initialize the algorithm. While

this method may not be suited for MNAR data, its effectiveness

is anticipated when missingness is not predominant. Due to the

inability to directly initialize missingness parameters using this

approach, the authors opt for a random initialization strategy.

3.3 Integrated completed likelihood criterion
(ICL)

Model selection is challenging in this context due to the need to com-

pute two different numbers of groups, and other approaches such

as AIC or BIC are not applicable because calculating the maximized

likelihood is not feasible. Fortunately, the method ICL extended to

this context by Brault et al., 2014 is computable.

In this section, we first introduce the log-integrated completed

likelihood. Next, we state a proposition regarding an asymptotic

approximation of it, and finally, we provide a practical approxima-

tion.

The integrated completed likelihood for a given number of 𝐾

row classes and 𝐿 column classes is

log

∫
𝑝 (𝑋,𝑌, 𝑍 |𝜃 ;𝐾, 𝐿) 𝑝 (𝜃 ;𝐾, 𝐿) 𝑑𝜃, (8)

where 𝑝 (𝜃 ;𝐾, 𝐿) is the prior distribution of the parameters. We note

that as it takes the missing values into account, it is focused on a

clustering point of view. Frisch et al., 2022 propose to take indepen-

dent InverseGamma(1,1) distributions as priors for the 𝜎2
𝐴
, 𝜎2
𝐵
, 𝜎2
𝐶

and 𝜎2
𝐷
and for 𝛼 and 𝛽 the non-informative Dirichlet distribution

priors as in Keribin et al., 2012.

Proposition 3.1 (Asymptotic ICL). An asymptotic expansion of
the log-integrated completed likelihood (8) up to a constant, is given
by

𝐼𝐶𝐿∞ (𝐾, 𝐿) = max

𝜃,𝑌,𝑍,𝐴,𝐵,𝐶,𝐷
log𝑝

(
𝑋 obs, 𝑌 , 𝑍,𝐴, 𝐵,𝐶, 𝐷 ;𝜃

)
− 𝐾 − 1

2

log(𝑛1) −
𝐿 − 1

2

log(𝑛2)

− 𝐾𝐿 + 1

2

log(𝑛1𝑛2) − log(𝑛1𝑛2) . (9)
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This proof of this proposition mainly uses a Taylor expansion

and an Stirling expansion, and it can be find in the Appendix C

from paper Frisch et al., 2022.

Nevertheless, the first term cannot be computed. To derive a prac-

tical criterion, we will use the expectation of the log-likelihood un-

der the variational posterior. Using (6), this expectation can be com-

puted as the difference between the Evidence Lower Bound (ELBO)

provided by the Variational Expectation-Maximization (VEM)J
(
𝑞𝛾 , 𝜃

)
and the entropy of the variational distribution 𝑞𝛾 , where(

𝑞𝛾 , 𝜃

)
∈ argmax

𝛾,𝜃

J (𝑞𝛾 , 𝜃 ) .

This is expressed as:

J
(
𝑞𝛾 , 𝜃

)
−H

(
𝑞𝛾

)
− 𝐾 − 1

2

log(𝑛1)

− 𝐿 − 1

2

log(𝑛2) −
𝐾𝐿 + 1

2

log(𝑛1𝑛2) − log(𝑛1𝑛2).

Following the same reasoning we can construct an ICL for the

MAR described by the section 2.2 using the following asymptotic

development of the log-integrated completed likelihood:

𝐼𝐶𝐿∞
MAR

(𝐾, 𝐿) = max

𝜃,𝑌,𝑍,𝐴,𝐶
log𝑝

(
𝑋 obs, 𝑌 , 𝑍,𝐴,𝐶;𝜃

)
− 𝐾 − 1

2

log(𝑛1) −
𝐿 − 1

2

log(𝑛2)

− 𝐾𝐿 + 1

2

log(𝑛1𝑛2) − log(𝑛1𝑛2). (10)

4 RESULTS
In this section, we begin by presenting the results obtained from

synthetic data. This initial step ensures certainty in the methodol-

ogy employed to adapt to the underlying model. Subsequently, we

transition to a real-world case involving votes in the French parlia-

ment. This practical application enables us to assess the adaptability

and flexibility of the assumed underlying model.

4.1 Results on synthetic data
Simulated data serves as a crucial tool for testing the algorithm’s

capability to generate consistent outcomes within controlled en-

vironments. However, when dealing with co-clustering problems,

there is a necessity to redefine certain metrics used to assess per-

formance. Initially, the indexes of row (resp. column) clusters are

known up to a permutation [K] (resp. [L]). To account for this per-

mutation space whenmeasuring discrepancy, the following formula

is employed:

𝑙𝑖𝑡𝑒𝑚 (𝑌, 𝑍,𝑌, 𝑍 ) = 1 − 𝑚𝑎𝑥
𝑡 ∈Ω1,𝑠∈Ω2

1

𝑛1𝑛2
Σ𝑖 𝑗𝑘𝑙𝑌𝑖𝑘𝑌𝑖𝑡 (𝑘 )𝑍 𝑗𝑙𝑍 𝑗𝑠 (𝑙 ) ,

where Ω1 (resp. Ω2) represents the set over all permutations of [K]

(resp. [L]).

Moreover, the use of Bayes risk is not suitable in this context. The

approximation of these parameters necessitates a Monte Carlo av-

eraging across a substantial number of data matrices, rendering the

process computationally expensive. In fact, estimating the Bayes

risk on two data matrices generated with the same distribution

may lead to very different results. The authors use the conditioned

Bayes risk on observed data matrices presented in Lomet et al.,

2012, to control difficulty of clustering on simulated data matrices

and tackle such variability:

𝑟𝑖𝑡𝑒𝑚 (𝑌, 𝑍 ) = E[𝑙𝑖𝑡𝑒𝑚 (𝑌, 𝑍,𝑌, 𝑍 ) |𝑋 obs]

(𝑌, 𝑍 ) = argmax

𝑌,𝑍

Σ
𝑖 𝑗
𝑝 (𝑌𝑖 , 𝑍 𝑗 |𝑋 obs) .

As the term 𝑝 (𝑌, 𝑍 |𝑋 obs) is intractable, they compute the expecta-

tion as the average of a Gibbs sampler of (𝑌, 𝑍 |𝑋 obs). Additionally,
a notable distinction between standard clustering and co-clustering

arises. While augmenting the size of a data matrix typically height-

ens the difficulty of standard clustering tasks, in the realm of co-

clustering, an increase in data matrix size paradoxically diminishes

task difficulty as it can be seen as having more discriminating in-

formation.

Figure 4: Comparison of classification errors con-
cerning the size of the data matrix
The conditional Bayes risk is represented in blue, while

the results from the paper are highlighted in green.

Figure 5: Analysis of classification errors as the
MNAR missingness model effect intensifies
Categorical LBM is depicted in pink, the MAR model in

orange, and the MNAR model in green.

Synthetic data generation: Synthetic data sets have been gener-

ated using various sizes and difficulty levels from a LBM with a

MNAR missingness model. These data sets are produced for the
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LBM, featuring three row and column classes:

𝛼 = 𝛽 =


1/3
1/3
1/3

 , 𝜋 =


𝜖 𝜖 1 − 𝜖
𝜖 1 − 𝜖 1 − 𝜖

1 − 𝜖 1 − 𝜖 𝜖

 ,
where 𝜖 refers to the difficulty of the clustering task and 𝜇 = 𝜎2

𝐴
=

𝜎2
𝐵
= 𝜎2

𝐶
= 𝜎2

𝐷
= 1 which incorporate a 35% rate of global missing-

ness. In practice, the entire estimation process has been repeated 20

times in order to study the variability induced by the initializations.

Class prediction: To facilitate class prediction, they fine-tuned

the parameter 𝜖 = 5% through a trial-and-error process. Subse-

quently, an initial data matrix of size 𝑛1 = 𝑛2 = 500 was generated,

and its size was progressively reduced to intensify the task diffi-

culty. Indeed, as anticipated, more favorable outcomes in terms

of the selection of the number of classes are achieved when uti-

lizing larger matrices with well-separated classes, and Bayes risk

decreases [Figure 4].

Missingness models: To compare the performance of missing-

ness models, datasets were generated for LBM with 𝜖 = 12%,

𝑛1 = 𝑛2 = 100 and 35% of missing data. The values of 𝜎2
𝐵
and

𝜎2
𝐷
were varied to model the MNAR missingness effect. For each

generated data matrix, LBM models were trained with Missing at

Random (MAR), Missing Not at Random (MNAR), and Categorical

LBM (refer to Keribin et al., 2015). The classification error 𝑙𝑖𝑡𝑒𝑚 with

respect to 𝜎2
𝐵
= 𝜎2

𝐷
illustrates that the Categorical Latent Block

Model is unsuitable for handling missing values. Furthermore, the

performance of the Missing at Random (MAR) model declines with

an escalation in the effect of MNAR missingness model. In contrast,

the MNAR model demonstrates effective adaptation, as evidenced

by a consistent classification error [Figure 5]. This observation

underscores the significance of accounting for informative missing-

ness, as neglecting it introduces substantial biases into estimation.

In the pursuit of selecting an appropriate missingness model, the

Integrated Completed Likelihood (ICL) criterion was employed. As

discussed in section 3.3, it was possible to develop an asymptotic

ICL for each missingness mechanism for which a practical criterion

can be developed. Assuming known values of𝐾 and 𝐿, the results of

both methods assessing missingness were estimated and compared.

The MNAR model was consistently selected, exhibiting better ICL

scores across various scenarios, emphasizing its appropriateness

for capturing the underlying missingness patterns.

4.2 Real data experiments
The paper focuses on a set of three data matrices that characterize

voting records from the lower house of the French parliament. The

primary data set, labeled ’votes,’ compiles the voting outcomes of

1256 ballots (columns) for 576 members of the parliament (MPs)

(rows). Each vote is represented in a 3-level format, 1 for positive,

-1 for negative, and 0 for missing values or abstention. Notably,

level 0 accounts for 89% of the entire data set. Note that this does

not comply with the assumption of non-predominance of MNAR

data utilized for initialization. The ’deputes’ data set, with size 576,

contains detailed information about each MP, including their first

name, family name, political group, and other relevant details. As

we can observe in [Appendix: Figure 8], the majority of the hemi-

cycle consists of centrist MPs (government) and right and left wing

members represent a minority. Lastly, the ’texts’ data set (size 1256)

encompasses information related to voted ballots, such as the de-

mandor and the name of amendments, providing additional context

to the voting records.

They deploy the ICL criterion in order to select the number of

row, column clusters and missingness model. The criterion selects

𝐾 = 𝐿 = 14 coupled to the MNAR model. The results displayed

in the paper are consequently used for such a number of row and

column cluster. Nevertheless, due to computation limitations, we

implemented ourselves the reduced version proposed (𝐾 = 3 and

𝐿 = 5).

In [Figure 6], the coherence of row clusters with political affilia-

tions is evident. Examining row clusters, we observe centrist MPs

predominantly in (clusters 6:13), right-wing MPs in (clusters 0, 1),

and left-wing MPs in (clusters 2,3). Turning to column clusters, a no-

table distinction arises: centrist MPs consistently vote positively on

original government demands (cluster A), while both right and left

wings favor amendments proposed by minorities (cluster C). How-

ever, as anticipated, ideological divisions persist on various topics

(clusters G:N). where a pronounced distinction between centrists

and right-left MPs is highlighted in both cases. However, differen-

tiation between right and left wings, and ballot clusters are less

apparent. This observation could be attributed to the initialization

dependence, which may lead to local maxima, or to the selection of

K=3 and L=5, driven by computational limitations.

Figure 6: Reordered opinions according to row and column
clusters
Left: Reordered votes matrix according to row and column clusters

with K = L = 14. The red lines delineate cluster boundaries.

Right: Summary of the inferred opinions for ballots and MPs using

the reordered version of 𝜋𝑘𝑙 .

In [Figure 7], the results showcase the maximum a posteriori

estimates of MPs’ propensities (𝜈
(𝐴)
𝑖

, 𝜈
(𝐵)
𝑖

). In this visualization,

the term ’A’ represents the propensity to vote accounting for the

MAR effect, while ’B’ indicates the additional effect of casting a

vote when supporting the resolution (MNAR effect). Notably, two

distinct clusters emerge, particularly evident along the 𝜈
(𝐵)
𝑖

axis.

The first cluster delineates the opposition, comprising MPs who
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Figure 7: Maximum a posteriori estimates of the MPs propen-
sities (𝜈 (𝐴)

𝑖
, 𝜈

(𝐵)
𝑖

) for K=L=14

vote positively to advance the amendment, strategically aligning

with the understanding that government supporters outnumber the

opposition members. The second cluster includes members from

’LaREM’ and ’MODEM,’ indicating support for the government.

This clear separation along the 𝜈
(𝐵)
𝑖

axis underscores the distinct

voting behaviors and affiliations among the parliamentarians. Simi-

lar clusters are evident in the clusters depicted in [Appendix: Figure

9], reflecting our own implementation. The primary distinction lies

in the propensities of the vote, 𝜈
(𝐴)
𝑖

, which appear to exhibit a more

pronounced spread.

5 CONCLUSION AND PERSPECTIVES
The primary objective of this article has been to identify the scarcity

of co-clustering methods adapted to informative missingness. Ad-

ditionally, the authors aim to demonstrate the advantages of em-

ploying such methods, proving their necessity in various contexts,

such as collaborative filtering. Following a comprehensive litera-

ture review, the article delves into a detailed explanation of the

methodology and assumptions outlined in Frisch et al., 2022, focus-

ing specifically on the case of binary data.

We begin by introducing a flexible missingness model designed

to complement the standard latent block model, nested within the

missingness assumptions and capable of accommodating mecha-

nisms for missing data not at random. Subsequently, we present the

technical tools essential for estimating model parameters through

a variational expectation-maximization approach. Moreover, we de-

velop a model selection criterion based on the integrated completed

likelihood.

Finally, we present experimental results, starting with a synthetic

dataset that validates the estimation algorithm’s ability to capture

the underlying model. We extend our analysis to a real-world data

case, demonstrating the model’s flexibility in capturing missingness

information.

Identifiability: While the estimation problem has been addressed

in Frisch et al., 2022, it is also important to consider the identifi-

ability of the model. Although experiments have indicated stable

estimates, there is a lack of formal results in this regard. One po-

tential approach to address this issue would be to expand upon the

sufficient conditions of identifiability proposed for the binary LBM

in Brault et al., 2014 to this MNAR model.

Data types: We have observed that, due to the relatively separa-

tion of this missingness model from the latent block model, there

is potential to adapt the algorithm to data types more general than

binary data. Multiple expansion avenues could be explored, such as

adapting for ordinal data, functional data, or mixed data. To achieve

this, we may refer to the data models explained in Biernacki et al.,

2023.

Usability: We established a GitHub repository to facilitate a clear

and systematic application of the model. Our efforts involved re-

producing figures from the original article and incorporating a

function to compute the ICL criterion eq. (9). However, we encoun-

tered various challenges during the code implementation process.

The utilization of L-BFGS for training proved to be computationally

intensive, necessitating access to a GPU. A noteworthy observation

concerns the selection of parameters K and L. While the paper

indicated that optimal values were 𝐾 = 𝐿 = 14, the absence of

the corresponding code hindered our ability to find these optimal

parameters to alternative datasets.

Local minima: Unfortunately, through extensive real-world data

testing, it has come to our attention that distinguishing between

MPs and ballots poses a considerable challenge. Although cen-

trist MPs generally exhibit a tendency to coalesce, a notable trend

emerges wherein right and left-wing affiliations are prone to being

erroneously grouped together. This phenomenon may be attrib-

uted to a dependency on initial parameters, potentially resulting

in convergence towards local minima. Another plausible explana-

tion lies in the selection of parameter L. As previously observed,

both left and right wing MPs often express affirmative votes for

minority-requested amendments. A small L may be sensible to

higher contrasts which may render more challenging to discern a

significant difference between left and right-wing oppositions.
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A FOUNDATIONAL MATHEMATICAL
CONCEPTS

In this section, we present mathematical tools employed in the

proofs throughout the article.

Proposition A.1 (Entropy of a Bernoulli). Let 𝑋 ∼ B(𝜏) be
a Gaussian distribution. Then, its entropy is given by

ℎ(𝑋 ) = −𝜏 log(𝜏).

Proof. We only need to notice that under the convention 0log0 =

0 we have

ℎ(𝑋 ) = −E [log(𝑝 (𝑋 ))] = −0log0 − 𝜏 log𝜏 .

□

Proposition A.2 (Entropy of a Gaussian). Let 𝑋 ∼ N(𝜇, 𝜎)
be a Gaussian distribution. Then, its entropy is given by

ℎ(𝑋 ) = 1

2

log

(
2𝜋𝜎2𝑒

)
.

Proof.

ℎ(𝑋 ) = −E [log𝑝 (𝑋 )]

= −E
[
log

(
1

√
2𝜋𝜎2

exp

(
−1

2

(𝑥 − 𝜇
𝜎

)
2

))]
=

1

2

log

(
2𝜋𝜎2

)
+ 1

2𝜎2
E
[
(𝑋 − 𝜇)2

]
=

1

2

log

(
2𝜋𝜎2𝑒

)
.

□

Now, we introduce a second-order Taylor series, which we uti-

lize in the computation of the Evidence Lower BOund (ELBO), as

demonstrated in section 3.2.

Proposition A.3. For independent variables 𝑋 and 𝑌 we have
the following second-order Taylor serie approximation

E [𝑓 (𝑋,𝑌 )] ≈ 𝑓 (E [𝑋 ] ,E [𝑌 ]) + 1

2

var(𝑋 ) 𝜕
2 𝑓 (E [𝑋 ] ,E [𝑌 ])

𝜕𝑥2

+1
2

var(𝑌 ) 𝜕
2 𝑓 (E [𝑋 ] ,E [𝑌 ])

𝜕𝑦2
.

A.1 Supplements on the computation of the
variational criterion

In this section, we explicitly compute the terms in (7), excluding

the last term, the development of which was previously explained

in section 3.2.

We have for the 𝑌 latent variable

E𝑞𝛾 [log𝑝 (𝑌 )] =
∑︁
𝑖𝑘

log(𝛼𝑘 )E𝑞𝛾 [𝑌𝑖𝑘 ] =
∑︁
𝑖𝑘

log(𝛼𝑘 )𝜏
(𝑌 )
𝑖𝑘

.

Similarly, for the 𝑍

E𝑞𝛾 [log𝑝 (𝑍 )] =
∑︁
𝑗𝑙

log(𝛽𝑙 )E𝑞𝛾
[
𝑍 𝑗𝑙

]
=
∑︁
𝑗𝑙

log(𝛽𝑙 )𝜏
(𝑍 )
𝑗𝑙

.

Now, following the same principle for the 4 Gaussian variables

𝐴, 𝐵,𝐶 and 𝐷 we have

E𝑞𝛾 [log𝑝 (𝐴)] = − 𝑛1

2

log(2𝜋) − 𝑛1

2𝜋
log(𝜎2𝐴) −

1

2𝜎2
𝐴

∑︁
𝑖

E𝑞𝛾
[
𝐴2

𝑖

]
= − 𝑛1

2

log(2𝜋) − 𝑛1

2𝜋
log(𝜎2𝐴)

− 1

2𝜎2
𝐴

∑︁
𝑖

((
𝜈
(𝐴)
𝑖

)
2

+ 𝜌 (𝐴)
𝑖

)
,

E𝑞𝛾 [log𝑝 (𝐵)] = − 𝑛1

2

log(2𝜋) − 𝑛1

2𝜋
log(𝜎2𝐵) −

1

2𝜎2
𝐵

∑︁
𝑖

E𝑞𝛾
[
𝐵2𝑖

]
= − 𝑛1

2

log(2𝜋) − 𝑛1

2𝜋
log(𝜎2𝐵)

− 1

2𝜎2
𝐵

∑︁
𝑖

((
𝜈
(𝐵)
𝑖

)
2

+ 𝜌 (𝐵)
𝑖

)
,

E𝑞𝛾 [log𝑝 (𝐶)] = − 𝑛2

2

log(2𝜋) − 𝑛2

2𝜋
log(𝜎2𝐶 ) −

1

2𝜎2
𝐶

∑︁
𝑗

E𝑞𝛾

[
𝐶2

𝑗

]
= − 𝑛2

2

log(2𝜋) − 𝑛2

2𝜋
log(𝜎2𝐶 )

− 1

2𝜎2
𝐶

∑︁
𝑗

((
𝜈
(𝐶 )
𝑗

)
2

+ 𝜌 (𝐶 )
𝑗

)
,

E𝑞𝛾 [log𝑝 (𝐶)] = − 𝑛2

2

log(2𝜋) − 𝑛2

2𝜋
log(𝜎2𝐷 ) −

1

2𝜎2
𝐷

∑︁
𝑗

E𝑞𝛾

[
𝐷2

𝑗

]
= − 𝑛2

2

log(2𝜋) − 𝑛2

2𝜋
log(𝜎2𝐷 )

− 1

2𝜎2
𝐷

∑︁
𝑗

((
𝜈
(𝐷 )
𝑗

)
2

+ 𝜌 (𝐷 )
𝑗

)
.

B GITHUB IMPLEMENTATION
We have established a GitHub repository containing computational

applications built upon the groundwork presented in [gfrisch/LBM-

MNAR]. In this repository, we have curated five notebooks, each

dedicated to exploring different aspects of the code version of the

LBM for MNAR scenarios. These notebooks serve as comprehen-

sive guides for users interested in understanding and utilizing the

model implementation.

1.1-Dummy_training.ipynb: This notebook initiates the train-

ing process for the Variational Expectation-Maximization (VEM)

model, as proposed in the referenced article. It provides a prelimi-

nary explorationwith a focus on one iteration of the VEM algorithm,
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Figure 8: Representation of the hemicycle of the French Na-
tional Assembly political groups
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Figure 9: Maximum a posteriori estimates of the MPs propen-
sities from our implementation for 𝐾 = 3 and 𝐿 = 5
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Figure 10: Reordered opinions according to row and column
clusters from our implementation 𝐾 = 3 and 𝐿 = 5

offering insights into the model’s early learning dynamics.

1.2-Model_LBM_MNAR.ipynb: Provides an overview of the

computation of the criterion

2-Train.ipynb: Designed to train the entire model on the par-

liament dataset. Given the potential time-intensive nature of this

procedure, we have saved the parameters in the file named:

"trained_parameters.yaml", so that, computing this step is not re-

quired to continue exploring the notebooks.

3-Figure_creation.ipynb: Specifically crafted for creating fig-

ures 12, 17, and 18 from the article. Running this notebook does

not necessitate the execution of the entire model, as parameters are

loaded from the yaml file.

4-ICL.ipynb: Designed to compute the ICL criterion associated

to the trained model from 2-Train.ipynb

Given the potential computational expense of training, we recom-

mend utilizing a GPU. To specify the device, the device argument

can be employed, with ’cuda’ recommended for general (use or

’mps’ for Mac). The default configuration sets the number of row

classes to 3 and column classes to 5.
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