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Motivation

Clustering

Trauma.center Heart
rate Death Anticoagulant.

therapy
Glascow

score
Pitie-Salpêtrière 88 0 No 3

Beaujon 103 0 Yes 5
Bicêtre 90 0 Yes 6
Bicêtre 89 0 No 4

Lille 62 0 Yes 6
Lille 98 0 No 5

...
...

...
...

...
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High-dimensionality ⇒Co-Clustering
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Motivation

Missing values (Not Available (NA))

Trauma.center Heart
rate Death Anticoagulant.

therapy
Glascow

score . . .

Pitie-Salpêtrière 88 0 No 3 . . .
Beaujon 103 0 NA 5 . . .
Bicêtre NA 0 Yes 6 . . .
Bicêtre NA 0 No NA . . .

Lille 62 0 Yes 6 . . .
Lille NA 0 No NA . . .

...
...

...
...

... . . .
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Binary data context

In [1], they focus exclusively on a binary matrix with missing values.

X obs =

1 2 ... n2
1 0 NA ... 1
2 1 0 ... 0
...

...
...

. . .
...

n1 NA 1 ... NA

Objective: Find the K row and L column clusters.
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Latent block model (LBM)

Y : Row cluster latent variable (of size n1 ×K ).
Z : Column cluster latent variable (of size n2 ×L).

Assumptions:
Y ⊥⊥Z
∀i1, i2 ∈ {1, . . . ,n1} Yi1 ⊥⊥Yi2 & Yi ∼M (1;α) for α ∈Rn1+ such
that

∑
k αk = 1.

∀j1, j2 ∈ {1, . . . ,n2} Zj1 ⊥⊥Zj2 & Zj ∼M (1;β) for β ∈Rn2+ such
that

∑
l βl = 1.

For π= (πkl ;k ∈ [K ], l ∈ [L]), we have

P
(
Xij = 1

∣∣YikZjl = 1;π
)=πkl ,

∀i1, i2 ∈ [n1], j1, j2 ∈ [n2], Xi1j1 |Yi1 ,Zj1 ⊥⊥Xi2j2 |Yi2 ,Zj2
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Latent block model (LBM)

Yi

Xij

Zj

Row Column

∀i ,Yi ∼M (1;α)
∀j ,Zj ∼M (1;β)

∀i , j ,Xij |Yik = 1,Zjl = 1∼B(πkl)

Figure 1: Summary of the latent block model (LBM).
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Missingness model
We have the incomplete matrix X obs and the mask matrix M where if
Mij = 0, then X obs

ij =NA.

Xij Mij

X obs
ij

µ

MCAR

CjAi

MAR

Bi

Dj

Xij

MNAR

Figure 2: Latent variables of the missingness model.
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Missingness model

{
∀i , Ai ∼N (0,σ2

A)

& Bi ∼N (0,σ2
B)

∀j , Cj ∼N (0,σ2
C)

& Dj ∼N (0,σ2
D)

∀i , j , Mij

|Ai ,Bi ,Cj ,Dj ,Xij

∼B
(
expit(Pij)

)
,

independent from the other and where

Pij :=
{
µ

+Ai +Bi +Cj +Dj

if Xij = 1
µ

+Ai −Bi +Cj −Dj

if Xij = 0,

where expit(x)= 1
1+exp(−x) .

MNAR

MAR

MCAR
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Summary of the model

Xij Mij

X obs
ij

Ai Bi Cj

Dj

µ

YiZj

MAR MNARMCARLBM

Figure 3: LBM adapted to the MNAR mechanism.

The latent variables are θ = (α,β,π,µ,σ2
A,σ2

B ,σ2
C ,σ2

D).
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The final model

Rewriting we have

X obs
ij |Yik = 1,Zjl = 1,Ai ,Bi ,Cj ,Dj ∼ cat

 0
1
NA

 ,

 p0
p1

1−p0 −p1

 , (1)

where

p0 = (1−πkl)expit(µ+Ai −Bi +Cj −Dj) (2)

and

p1 =πkl expit(µ+Ai +Bi +Cj +Dj). (3)
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Variational expectation maximization (VEM)
The free energy

J (q

γ

,θ)=H (q

γ

)+ logp
(
X obs,Y ,Z ,A,B,C,D

)
.

∀i Yi |X obs ∼M (1;τ(Y )

i )

∀j Zj |X obs ∼M (1;τ(Z )

j )

∀i Ai |X obs ∼N (ν
(A)
i ,ρ

(A)
i )

∀i Bi |X obs ∼N (ν
(B)

i ,ρ
(B)

i )

∀j Cj |X obs ∼N (ν
(C)

j ,ρ
(C)

j )

∀j Dj |X obs ∼N (ν
(D)

j ,ρ
(D)

j )

+
Mean field approximation.
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Variational expectation maximization (VEM)

Variational distribution:

qγ =
n1∏
i=1

M
(
1;τ(Y )

i

)
×

n2∏
j=1

M
(
1;τ(Z )

j

)
×

n1∏
i=1

N
(
ν
(A)
i ,ρ

(A)
i

)
×

n1∏
i=1

N
(
ν
(B)

i ,ρ
(B)

i

)
×

n2∏
j=1

N
(
ν
(C)

j ,ρ
(C)

j

)
×

n2∏
j=1

N
(
ν
(D)

j ,ρ
(D)

j

)
.

Variational parameters:

γ :=
(
τ(Y ),τ(Z ),ν(A),ρ(A),ν(B),ρ(B),ν(C),ρ(C),ν(D),ρ(D)

)
.

Fuentes, Reyero Learning from missing data with the LBM November 30, 2023 17 / 39



VEM algorithm
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Integrated completed likelihood (ICL)
Log-integrated completed likelihood:

log
∫

p (X ,Y ,Z |θ;K ,L)p (θ;K ,L)dθ,

Asymptotic approximation:

ICL∞(K ,L)= max
θ,Y ,Z ,A,B,C,D

logp
(
X obs,Y ,Z ,A,B,C,D;θ

)
− K −1

2
log(n1)−

L−1
2

log(n2)−
KL+1

2
log(n1n2)− log(n1n2).

Practical approximation:

J
(
qγ̂, θ̂

)−H
(
qγ̂

)− K −1
2

log(n1)−
L−1

2
log(n2)−

KL+1
2

log(n1n2)

− log(n1n2).
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Model computation: Maximization

VEM computation: 2 alternate maximizations
VE-Step: Optimization with respect to variational distribution qγ

argmax
γ

J (qγ,θ)

M-Step: Optimization with respect to model parameters θ

argmax
θ

J (qγ,θ)

No formal and explicit solutions: L-BFGS optimization algorithm
Compute the gradients: computationally intense
Autograd submodule from PyTorch: GPU capabilities
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Results: Synthetic data

Objective: ensures certainty in the methodology employed to adapt
to the underlying model

Data generation: various sizes and difficulty levels from a LBM with
a MNAR missingness model

Parameters incorporating 35% rate of global missingness
Process repeated 20 times: variability parameter initialization
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Synthetic data: Class prediction

Figure 4: Comparison of
classification errors concerning the
size of the data matrix

⋆ The conditional Bayes risk,
▲ Results from the paper

litem: measures discrepancy
among row and column
clusters
Task difficulty decreasement:
increasing size of n1 = n2

Better class prediction for
larger datasets (lower litem)
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Synthetic data: Missingness model

Figure 5: Classification errors as the
MNAR effect intensifies

• Categorical LBM,⋆ MAR model,
▲ MNAR model.

MAR performance declines
with increasing MNAR
effect
MNAR consistent
classification error
Importance to account for
informative missingness

Model selection: Estimation ICL for each missingness mechanism
(K, L known): MNAR consistently selected
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Results: Real data

Objective: assess adaptability and flexibility of the assumed
underlying model.

3 datasets:

’votes’ (576 × 1256)

1: Positive
-1: Negative
0: NA/abstention (89%)

’texts’: ballots (1256 columns)

Amends, demandors, date

’deputes’: MPs (576 rows)

Names, political group etc.
Majority: Centrist MPs
(’LaREM’, ’MODEM’)

Hemicycle of the French
National Assembly political
groups
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Real data: vote repartition

Figure 7: Reordered opinions according to row and column clusters
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Real data: propensity to vote

Maximum a posteriori of the
MPs propensities (ν

(A)
i ,ν

(B)

i )
for K=L=14

A: propensity to vote
(MAR effect)
B: additional effect of
casting a vote when
supporting the
resolution (MNAR)
νB: Discrimination of
two clusters (centrists,
left-right)
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Conclusion

Scarcity of co-clustering methods for informative missingness
Flexible missingness model for binary LBM
Model estimation through a VEM approach
Model selection criterion based on ICL
Challenges: local minima convergence in VEM
Future work:

Adapt the algorithm to ordinary data types
Formal identifiability proof
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Model estimation:

The observed log-likelihood can be rewritten as:

logp
(
X obs;θ

)
=J (q,θ)+KL

(
q(·)

∥∥∥p(·|X obs;θ)
)

,

where free energy J given by

J (q,θ)=H (q)+ logp
(
X obs,Y ,Z ,A,B,C,D

)
.
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Classification error

Measure of discrepancy:

litem(Y ,Z ,Ŷ , Ẑ )= 1− max
t∈Ω1,s∈Ω2

1
n1n2

ΣijklYik Ŷit(k)Zjl Ẑjs(l),

where Ω1 (resp. Ω2) represents the set over all permutations of [K]
(resp. [L]).
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Conditioned Bayes risk

Conditioned Bayes risk on observed data matrices [[2]]:

ritem(Ŷ , Ẑ )= E[litem(Y ,Z ,Ŷ , Ẑ )|X obs]

(Ŷ , Ẑ )= argmax
Y ,Z

Σ
ij
p(Yi ,Zj |X obs).

Control difficulty of clustering on simulated data matrices
Tackle variability across risk on simulated data matrices

As the term p(Y ,Z |X obs) is intractable, they compute the expectation
as the average of a Gibbs sampler of (Y ,Z |X obs).
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Difference in ICL Figure

Figure 9: Difference in ICL between MAR and MNAR with respect to an
increase in the MNAR effect

Where ⋆ is the median and MNAR model is selected when the ICL difference
is positive.
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Number of row and column clusters figure

Figure 10: Number of (K, L) models selected by the asymptotic ICL among 20
trials on data matrices of different sizes and difficulties.

All matrices are generated with the same number of row and column
classes: K = L = 3.
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Our implementations
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Figure 11: Maximum a posteriori estimates of the MPs propensities from our
implementation for K = 3 and L= 5

Fuentes, Reyero Learning from missing data with the LBM November 30, 2023 38 / 39



Our implementations

MODEM (3)
LaREM (24)
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Figure 12: Reordered opinions according to row and column clusters from our
implementation K = 3 and L= 5
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