
Report: Attention is All You Need

V. GÖLZ and L. FUENTES

February 27, 2023

Contents

1 Introduction 2

2 Historical Background 2

3 The Attention-Mechanism 3
3.1 Intuition . 3
3.2 Mathematical Formulation . 3
3.3 Multi-Head-Attention . 4

4 General Architecture 5
4.1 Encoder-Decoder . 5
4.2 Positional Encoding . 6

5 Performance 6

6 Own Implementation 7

7 Conclusion 9

8 References 9

1

1 Introduction

In this report we summarize the most important ideas from the paper [Vas+17] and also
introduce our own simple implementation.

In this paper, which is called Attention is All You Need, the authors propose a novel
neural-network architecture, called the Transformer. Today (2023), this architecture is
still state-of-the-art (SOTA), meaning that it is used in many different areas in deep
learning while yielding by far the best results compared to other techniques. Transform-
ers are notably used in natural language processing (NLP), but also in computer vision
(CV) and speech processing.

2 Historical Background

Before the introduction of transformer-based models, recurrent-neural-networks (RNNs)
were the SOTA models. Over the years, different versions of these models were devel-
oped. These models marked a milestone in the history of NLP, since their performance
was superiour to previous techniques. Still, RNNs had many problems, for example that
they were not capable of retaining long-term information. They also had vanishing and
exploding gradient problems, and, arguably even more important, they were not able to
train in parallel because of their sequential structure. This detail made such networks
very inefficient to train, even more so because modern computers and especially graphics
processing units (GPUs) are optimized for matrix-vector products. An improvement for
the memory problem were long-short-term-memory networks (LSTMs) and gated recur-
rent units (GRUs) which introduced a memory mechanism, leading to better results for
long-term dependencies. Still, the main problems remained the same, namely the fact
that they cannot be efficiently trained in parallel and that long-term dependencies still
posed problems. The stage was now set for new innovations to come along.

In 2017 a research team at Google Brain lead by Ashwin Vaswani published the paper
Attention is All You Need [Vas+17]. This publication was transformational in the field
of Deep Learning and especially in NLP. Almost all SOTA architectures use this paper
as a foundation, notably ChatGPT, DALL-E, BERT and more.

What made this paper so special was the introduction of the Transformer. This archi-
tecture solved many of the existing challenges with recurrence-based models. The main
features of transformer models can be summarized as follows:

1. They are able to understand long-term dependencies without limits or bottlenecks.

2. They have less problems with gradient vanishing and explosion, because recurrent
mechanisms are no longer used.

3. Training-costs can be reduced massively. Modern hardware (namely GPUs such as
the ones from Nvidia) are heavily optimized for parallel matrix-vector calculations,
strongly favoring the transformer architecture over RNNs.

2

Recently, Transformer models have drawn a lot of media attention. Since the introduc-
tion of ChatGPT in late 2022, many newspapers and authors ask themselves if this is in
fact the beginning of a new AI era. ChatGPT in particular has seen over a 100 million
clients using their service. This also started a technological race between giants such as
Alphabet, Microsoft and Meta. While opinions on this topic differ, it clearly shows the
impact of the paper.

3 The Attention-Mechanism

3.1 Intuition

We now dive deeper into the mathematical details and introduce the attention mech-
anism. For this purpose, we first explain the intuition behind attention. The idea is
to introduce contextual information to the original input. The easiest example is self-
attention. Here the input and out phrases are same. As visualized in figure 1, the
algorithm finds other words in the same phrase that relate most to the given word.

Figure 1: The encoder self-attention distribution for the word it from the 5th to the 6th
layer of a Transformer trained on English to French translation (one of eight
attention heads). Image source: ai.googleblog.com.

3.2 Mathematical Formulation

Mathematically the attention mechanism is modelled after a query q that is retrieving
values v from a database. The database consists of key-value pairs (ki, vi). In a classic
database, the query fits exactly one key, hence only one value is returned. The attention
mechanism uses a more probabilistic approach. Let q, ki ∈ Rdk and vi ∈ Rdv . Then the

3

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

formula is given by

attention(q, k, v) =
∑
I

similarity(q, ki)× vi, (1)

where we have
similarity : Rdk×dk → [0, 1]. (2)

Note that if the similarity function simply tests for equality, we are in the classic setting.
Popular similarity functions for attention are

• q⊺k (dot-product)

• q⊺k√
dk

(scaled dot-product)

• q⊺Wk (weighted dot-product)

• W qq +W kk (weighted sum)

where dk is the dimension of the keys and W,W q,W k ∈ Rdk×dk are weight matrices.
In the paper [Vas+17] the scaled dot-product is used. Note also that this function can
easily be run in parallel by concatenating several queries, keys and values to matrices.
The attention function from the paper therefore is

Attention(Q,K, V) = softmax

(
QK⊺

√
dk

)
V. (3)

The purpose of the division by
√
dk is to prevent the dot products from getting too large.

Assume that q and k are independent random variables with mean 0 and variance 1.
Then q⊺k =

∑dk
i=1 qiki has mean 0 and variance dk, hence the division scales back the

variance. The function also uses softmax to normalize the factors that are multiplied
with the values.

3.3 Multi-Head-Attention

In the paper, the authors found that it is useful to use several attention functions in
parallel. Therefore, they linearly project the queries, keys and values h times with
different learned projections. These projections are then passed through the attention
function and concatenated, before once again being linearly projected to the desired
output shape. The formula is

MultiHead(Q,K, V) = Concat(head1, . . . ,headh)W
O (4)

with
headi = Attention(QWQ

i ,KWK
i , V W V

i) (5)

The projections are trainable parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk ,
W V

i ∈ Rdmodel×dv and WO ∈ Rh×dv×dmodel . The idea is that by using several different
projections of the same inputs, the model can pay attention to different patterns at the
same time. This idea is similar to using several different kernels in CNNs in order to
detect different patterns in images, thus yielding better results.

4

Figure 2: The Transformer model architecture. Main features are input embedding,
positional encoding, the encoder block, output embedding and the decoder
block. Source: [Vas+17].

4 General Architecture

The structure of the Transformer is similar to older architectures with recurrent layers,
such as in [Cho+14]. It uses an encoder-decoder structure, where the main difference
is the replacement of recurrent layers with attention layers. Because attention layers
do not retain positional information, positional encoding (PE) is added to the input
embedding. An overview of the model architecture can be found in Figure 2.

4.1 Encoder-Decoder

The Encoder aims to add information to the original input sentence, regarding the
importance of words with respect to other words in the phrase. This block is composed
of a stack of N identical layers, which we call attention layers. Each attention layer is
composed of two sub-layers. The first one is a multi-head attention layer that employs
self-attention, the second one is a simple fully connected feed-forward layer formed by
two linear functions with a ReLU in between. Both sub-layers have a residual connec-
tion around it and layer normalization afterwards in order to evade vanishing gradient

5

problems and speed up training. We repeat this procedure N times. The first time we
consider words, on the second round, we analyse the importance of pairs of words, and
so on. Note that the input and output shapes are equal.

The Decoder is used to predict the most probable word in the translated sentence. It
has a similar structure compared to the encoder, consisting of a stack of M identical
layers. Note that in the paper N = M = 6 is used. However, a decoder layer consists
of three sub-layers. The first is a masked multi-head attention layer employing self-
attention. This sublayer masks the next outputs to avoid illegal connections and makes
predictions using only previous information. The second is a normal multi-head attention
layer, where the keys and queries are taken from the encoder output, while the values
come from the previous sub-layer. This is where the translation process happens. By
using keys and queries from the encoder, the decoder extracts information from the
original sentence to predict the next word. The last layer is a fully connected layer as it
was the case in the encoder.

4.2 Positional Encoding

Positional encoding adds a representation of a word’s position in a sentence to the
embedding. In the paper, they use a method called frequency-based positional embedding
by using the following equations:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = sin(pos/100002i/dmodel)

This offers a unique encoding at each step, generalizes well on longer sequences and is
deterministic. By applying the sine and cosine functions, we have bounded values inside
[-1,1] which we will be used to spot the rate of change. The frequency is used in order to
modify the wavelength in which words will be plotted. The output for each positional
encoding step pos is a vector of dimension dmodel which is concatenated to the input
embedding.

5 Performance

In the initial paper, the performance was measured by several translation tasks such
as EN-to-DE and EN-to-FR. The metric used to evaluate the performance was the
BLEU-score1. Table 3 shows the performance of the architecture employed in the paper
compared to other SOTA models. In Figure 3, we can already see that the Transformer
performed better than all other models. Furthermore, it is important to note that the
previous models have been highly optimized whereas the Transformer was essentially a
prototype. Note also the huge reduction in training costs by an order of 103. That alone
represents a significant research finding.

1The BLEU-score evaluates the quality of a translation by comparing it to reference translations made
by expert humans. For more information, see wikipedia.org/wiki/BLEU.

6

https://en.wikipedia.org/wiki/BLEU

Figure 3: Performance evaluation from the paper. The results clearly show that the
transformer model improves on standard language tasks over previous SOTA
models. Note that at the same time, training costs were cut by a factor of 103.

6 Own Implementation

To see the preceding sections in practice, we implement our own model with a similar
architecture in order to predict the sentiment of movie reviews. Note that this is a binary
classification problem. The goal is to predict the labels 1 or 0 indicating whether the
review is positive or negative, respectively. Since we are not generating new phrases or
translations, we do not need a decoder in our architecture. Hence, we only use the first
half of the Transformer architecture, followed by linear and softmax function.

Figure 4: Architecture of our own implementation. The N encoder layers are followed
by a classification head. This architecture was build to predict the sentiment
of movie reviews.

Our implementation can be found here. We use python 3.10 and pytorch 1.13.1 for the
network. The attention implementation has been taken from annotated-transformer.

7

https://github.com/Bl4ckEnd/TransformerProject
http://nlp.seas.harvard.edu/annotated-transformer/

Dataset. We use a dataset containing n=50.000 movie reviews from the web page
IMDB and their respective labels (1 for ”positive” and 0 for ”negative”). We first take the
processed reviews, merge values into single variables separated by whitespaces and obtain
a list of words. Then, we build the vocabulary by counting, sorting and enumerating
the different words in the dataset. We encode the words using the functions review.split
and pad our sequences to have the same length in all reviews. We set seq length to
256.

Architecture. We employ input embedding and positional encoding before passing the
tensors into our attention layers, as introduced in 4.1. We use N layers. The tensors are
then passed into the classification head. The head consists of two linear layers, where
ReLU is used as activation function for the first layer. The (input, output)-dimensions
of the layers are (dmodel × seq length, 128) and (128, 2).

Training and Testing. For training, we use the Adam optimizer with a learning rate
of 0.001, epochs between 5 and 7 and n=40.000 training samples. We use n=10.000 test
samples.

Results. The results are shown in Table 1. Overall we can see that the model performed
reasonably well, with an accuracy of up to 88%. One interesting finding is that an
increased model size did not necessarily result in a better performance. This might be
due to overfitting problems or an insufficient amount of data. In particular, increasing
the number of epochs to more than 5 did not improve the accuracy. For larger models
with more parameters, n=40.000 might not be enough to tune all weights properly.

epochs d model N d ff h Accuracy

5 128 2 256 2 87.8%
7 128 2 256 2 87.3%
5 128 2 256 4 88.4%
7 128 4 256 4 88.0%
5 128 4 256 2 86.9%
5 128 4 256 4 83.4%
5 512 2 1024 4 84.4%

Table 1: Test results for different hyperparameter settings. Greater model size and more
epochs did not results in a better performance.

8

7 Conclusion

In this work, we explained the main ideas from the paper Attention is all you need. We
briefly introduced the historical background and set the paper into context. We then
moved on to explain the most important features of the transformer architecture con-
ceptually and mathematically. Afterwards, we presented the performance improvements
of the network compared to other models. Lastly, we implemented a simple version of
this model to perform a sentiment analysis on a dataset of movie reviews. We tested
different hyperparameters and managed to achieve an accuracy of almost 90%, which is
a good result for such a small model.

8 References

[Cho+14] Kyunghyun Cho et al. Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. 2014. doi: 10.48550/ARXIV.
1406.1078. url: https://arxiv.org/abs/1406.1078.

[Dev+18] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. 2018. doi: 10.48550/ARXIV.1810.04805. url:
https://arxiv.org/abs/1810.04805.

[Vas+17] Ashish Vaswani et al. Attention Is All You Need. 2017. doi: 10.48550/
ARXIV.1706.03762. url: https://arxiv.org/abs/1706.03762.

[Vas+18] Ashish Vaswani et al. Tensor2Tensor for Neural Machine Translation. 2018.
doi: 10.48550/ARXIV.1803.07416. url: https://arxiv.org/abs/1803.
07416.

[Xie+21] Huiqiang Xie et al. “Deep Learning Enabled Semantic Communication Sys-
tems”. In: IEEE Transactions on Signal Processing 69 (2021), pp. 2663–2675.
doi: 10.1109/tsp.2021.3071210. url: https://doi.org/10.1109.

9

https://doi.org/10.48550/ARXIV.1406.1078
https://doi.org/10.48550/ARXIV.1406.1078
https://arxiv.org/abs/1406.1078
https://doi.org/10.48550/ARXIV.1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/ARXIV.1803.07416
https://arxiv.org/abs/1803.07416
https://arxiv.org/abs/1803.07416
https://doi.org/10.1109/tsp.2021.3071210
https://doi.org/10.1109

	Introduction
	Historical Background
	The Attention-Mechanism
	Intuition
	Mathematical Formulation
	Multi-Head-Attention

	General Architecture
	Encoder-Decoder
	Positional Encoding

	Performance
	Own Implementation
	Conclusion
	References

