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Context

Medical ultrasonography:
@ Relies on the principle of acoustic impedance
e Sending high frequency acoustic waves that interact with organs and
tissues producing echoes
e Echo patterns are harnessed to compute a detailed 2-D image of the
body tissue
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Context

Medical ultrasonography:

@ Relies on the principle of acoustic impedance

e Sending high frequency acoustic waves that interact with organs and
tissues producing echoes

e Echo patterns are harnessed to compute a detailed 2-D image of the
body tissue

@ Non invasive, rapid and accessible results

o Contraints: speckle, acoustic shadows, artifacts, etc.

Laura Fuentes Optimization for Computer Vision 2023 January 14, 2024 3/18



Article presentation

@ Ultrasound speckle reduction using adaptative wavelet
thresholding

@ Authors: Anterpreet Kaur Bedi and Ramesh Kumar Sunkaria

@ Released in 2022, in Multidimensional Systems and Signal Processing
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Objectives

Speckle:

@ Granular multiplicative noise that degrades texture information and
obscures details ex: lines, edges, and boundaries

@ Encapsules texture information depending on anatomical tissues

@ Despecking: crucial pre-processing step consisting in removing
speckle while preserving essential features of image.
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Objectives

Speckle:

@ Granular multiplicative noise that degrades texture information and
obscures details ex: lines, edges, and boundaries

@ Encapsules texture information depending on anatomical tissues

@ Despecking: crucial pre-processing step consisting in removing
speckle while preserving essential features of image.

The authors introduce a novel technique to despeckle ultrasound images
based on wavelet thresholding.
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Methods: Previous work

Two main approaches:
@ Single scale:

o Direct application of filters
o ex: Weiner filter, linear filters (e.g., median filter), and non-linear filters
(e.g., statistic filters, low-pass filters)
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Methods: Previous work

Two main approaches:
@ Single scale:
o Direct application of filters
o ex: Weiner filter, linear filters (e.g., median filter), and non-linear filters
(e.g., statistic filters, low-pass filters)

o Multi-scale:
e Operate on a set of sub-images derived from an original image.
e Step 1: acquiring sub-image sets, e.g.: wavelets, curvelets, ridgelets,
etc.
° despeckling
e Paper's focus: multi-scale approach based on a
applied on wavelet coefficients.
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Methods: 6-step algorithm

Algorithm Image despeckle

Step 1: Log transformation of the image
Step 2: Wavelet decomposition

Step 3: Choice of threshold

Step 4: Thresholding function implementation
Step 5: Inverse wavelet transformation

Step 6: Exponential transformation
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Methods: Steps 1 & 2

Step 1: Log transformation

Turn multiplicative noise into additive

— consider log transformation of the image: L(f(x,y))
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Methods: Steps 1 & 2

Step 1: Log transformation
Turn multiplicative noise into additive
— consider log transformation of the image: L(f(x,y))

Step 2: Wavelet decomposition (2 level)

Breaking down the ultrasonic image into a set of sub-images

— Multi-resolution analysis: approximate component (A) & detailed
components: (H, V, D)

IMAGE ‘ -

D1 Vi D1 Vi

Figure: 2 level decomposition

e First level: [A1, H1, Vi, D1] = DWT(L(f(x,y)))
e Second level: [Az, Ha, Vo, Do] = DWT (A1)
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Thresholding techniques

Thresholding methods to address despeckling consist in modifying
wavelet coefficients with values below a given threshold

@ Soft thresholding: wavelet coefficients below a given threshold to
zero, and values above the threshold are reduced towards zero

W_{o if w| <t Q)

sign(w)(|w| —t) if lw|>t
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Thresholding techniques

Thresholding methods to address despeckling consist in modifying
wavelet coefficients with values below a given threshold

@ Soft thresholding: wavelet coefficients below a given threshold to
zero, and values above the threshold are reduced towards zero

W_{o if w| <t Q)

sign(w)(|w| —t) if lw|>t

o Hard thresholding: set to zero wavelet coefficients below the
threshold, leaving other coefficients unchanged

VAV:{O if lw| <t )

w o if lw| >t
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Methods: Steps 3 & 4
Step 3: Choice of threshold

The authors introduce a global thresholding function based on diagonal

sub-bands at at several decomposition levels to apply on detailed
components: H, V, D.
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Methods: Steps 3 & 4

Step 3: Choice of threshold

The authors introduce a global thresholding function based on diagonal
sub-bands at at several decomposition levels to apply on detailed
components: H, V, D.

2_0.2
r=2p )y 5 arag(r)

1

Step 4: Thresholding function

They introduced an adaptative thresholding function merging soft and
hard techniques: scaling down gradually to zero wavelet coefficients with
values below threshold without altering other coefficients.

w.ewl=t) if lw| < 7
XT(W):{ [wi

w if (w|>71

Laura Fuentes Optimization for Computer Vision 2023 January 14, 2024 10 / 18



Methods: Steps 5 & 6

Major asumption: speckle predominantly manifests in low-valued
wavelet coefficients.

Step 5: inverse wavelet transformation

Captures the denoising modifications and returns the denoised version of
the log of the image.
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Methods: Steps 5 & 6

Major asumption: speckle predominantly manifests in low-valued
wavelet coefficients.

Step 5: inverse wavelet transformation
Captures the denoising modifications and returns the denoised version of
the log of the image.

Step 6: Exponential transformation

To bring back the image to its original domain f/ = elf’
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Paper results

Performance  Average Median fikering  SRAD Shearletwith  Shearletwith  NLMfliring  Wavelet Proposed
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b- Paper results

a- Comparison of average
performance measures for
test images
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Results: Implementation Challenges

@ Contradiction regarding threshold computation:
Global threshold # Threshold for each detailed component
Nomenclature problem?

@ Lack of specificity: computation of noise variance of noisy image o;

o Computation time
— significant size reduction of the ultrasound images dataset
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Results: Synthetic noisy image
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a- Filter’s performance on a
synthetic noisy image

b- Synthetic noisy image
denoising with 9 different filters

Figure: Results on synthetic data
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Real dataset presentation

Limited set of ultrasound images sourced from Kaggle.
@ 2 normal ultrasound images
@ 1 benign

@ 1 malignant
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Results: Ultrasound images dataset
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a- Wavelet’s performance on
ultrasound images

b- Implementation of different
filters on ultrasound images

Figure: Results on ultrasound images
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Results: Ultrasound images dataset
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a- Filter’s performance on
ultrasound images

Figure: Results on ultrasound images

Laura Fuentes Optimization for Computer Vision 2023 January 14, 2024

17 / 18



Conclusion

Novel multi-scale approach
Thresholding function combining soft and hard thresholding

Wavelets allow the dissection of a discrete-time signal into various
scale components and orientations

(]

Effective pre-processing step that outperforms single-scale methods

Results: despeckled images with preserved edges, boundaries and
structures
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Conclusion

@ Novel multi-scale approach
Thresholding function combining soft and hard thresholding

(]

Wavelets allow the dissection of a discrete-time signal into various
scale components and orientations

Effective pre-processing step that outperforms single-scale methods

Results: despeckled images with preserved edges, boundaries and
structures

@ Limitations:
e Sparse detailed components due to lack of variation
e Implementation challenges

o Contradiction regarding threshold computation (global vs. local)
o Noise variance of noisy image o; computation
o Computation time
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